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ARTICLE INFO ABSTRACT

Keywords: In real-world applications, the diagnostic efficiency of wind turbine systems, particularly rolling bearings, is
Wind turbine significantly impaired by variable operating conditions such as fluctuating rotational speeds and varying loads,
Bearings

along with environmental disturbances including transient and non-Gaussian noises. These disturbances mask
damage indicators, creating substantial challenges in accurate fault detection. Traditional diagnostic methods
are often inadequate due to their sensitivity to noise and inability to identify failure signatures within multi-
variate random transient noise environments. To address these challenges in wind turbine fault diagnosis, this
research introduces an adaptive signal processing regime with three key innovations: an adaptive signal tracking
mechanism featuring real-time transient shift identification, a Dynamic Markov Transition Frequency with Adap-
tive Peak Rates (DMTF-APR) model for enhanced abnormality detection, and a Multi-Period Weighted Average
Framework (MPWAF) that mitigates transient interference noise through the identification and replacement of
anomalous signal fragments using periodic characteristics and weighted averages. Experimental validation with
real-world wind turbine farm data demonstrates the framework’s superior fault diagnosis performance, particu-
larly in scenarios with complex non-Gaussian or transient noise interference, achieving significant improvements
in detection accuracy and reliability compared to conventional methods.

Fault diagnosis

Impulsive noise

Signal processing

Prognostics and health management

1. Introduction identify failure signatures within multivariate random transient noise
environments (Xin et al., 2024). This challenge has created an urgent

Wind turbines (WTs) are sophisticated electromechanical systems need for more robust and adaptive diagnostic approaches that can main-

whose reliable operation depends critically on the health of their trans-
mission chain components, particularly bearings (Du et al., 2024; Zhang
et al., 2025; Huang et al., 2021). Despite their crucial role, these bear-
ings operate under challenging conditions that include not only environ-
mental stressors but also variable operational states such as fluctuating
speeds and loads, making fault diagnosis particularly complex. The pres-
ence of transient and non-Gaussian noise further complicates the detec-
tion of incipient faults, as these disturbances can effectively mask early
damage indicators. While conventional fault diagnosis methods have
been widely implemented, their effectiveness is often compromised in
real-world applications due to their sensitivity to noise and inability to
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tain accuracy under variable operating conditions.

The fault detection and diagnostics (FDD) for wind turbine systems
has evolved through several complementary methodologies, including
signal processing-based methods (Chen et al., 2024b; Jin et al., 2023),
Machine Learning (ML) methods (Chen et al., 2020; Yao et al., 2024),
and model-based approaches (Zemali et al., 2023). Among these, vibra-
tion signal analysis has emerged as a particularly effective approach, of-
fering systematic identification of deterioration indicators through var-
ious analytical domains—including time domain (Chen et al., 2019;
Panagiotopoulos et al., 2023), frequency domain (Zhao et al., 2024),
time-frequency domain (Liu et al., 2023), and statistical analysis

E-mail address: pengchen@alu.uestc.edu.cn, dr.pengchen@foxmail.com (P. Chen).

https://doi.org/10.1016/j.oceaneng.2025.120798

Received 10 December 2024; Received in revised form 10 February 2025; Accepted 24 February 2025
0029-8018/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
https://orcid.org/0000-0002-3265-3079
mailto:pengchen@alu.uestc.edu.cn
mailto:dr.pengchen@foxmail.com
https://doi.org/10.1016/j.oceaneng.2025.120798
https://doi.org/10.1016/j.oceaneng.2025.120798

P. Chen et al. Ocean Engineering 325 (2025) 120798

Obtaining Raw Vibration Signals

Test Rig

Developing the Proposed Methodology

Signal Processing

Discacie Waveles

IWTY
Baw wignal

Markov Signal Transition Probability Model

Kufl- | L
dharesbuoling (L .-'I“"II.PI'- 1

Bunerwont

Determine the Percentage of Anomaly

Recomsticeed snal ]

Renmmadize

Mondugonnl Mon-sero Transfer Probubility

Santed peobability Soeted reconstreied signal
{ A & \ ¢ ; Baic thresbold
1 M .
{ Mol Sontad Probisbilingio ) | |~ ]

¥ (AN, < 0) - AN

Locate anomalics

index = ..Ir;_| N ) | n—o—:—nf--f—-j
Mindiff = (‘fﬁh'.h'k = ‘Fr'fn!vx} — "
[ Experimental Validation ]

Interference Lumil Hand

—

Selection

Envelope Demodulation

Fig. 1. The framework of the proposed Dynamic Markov Transition Frequency with Adaptive Peak Rates (DMTF-APR).

(Chen et al., 2024b; Kaewniam et al., 2022; Chen et al., 2025). This
methodology proves especially valuable when extensive datasets are
unavailable, as it relies primarily on physical understanding and estab-
lished engineering principles. Contemporary deep learning approaches,
including CNNs (Chen et al., 2021), ResNets (Chen et al., 2023b), and
Transformers (Maldonado-Correa et al., 2024; Chen et al., 2024a), com-
plement these traditional methods by uncovering complex nonlinear re-
lationships in vibration signals, although they typically require substan-
tial datasets and computational resources.

In the complex operational environment of wind farms, vibration-
based diagnosis faces significant challenges due to multiple interference
sources. Various localized defects, such as pitting and surface cracks,

produce distinctive vibration signatures that manifest as characteristic
fault frequencies. However, these signatures are often masked by non-
Gaussian noise, transient disturbances, and impulsive variations from
various sources, including non-targeted mechanical elements, auxiliary
systems, and environmental factors. The time-varying nature of these
interferences, coupled with their non-stationary characteristics, makes
it particularly challenging to isolate specific fault frequencies associated
with bearing components.

Recent research has attempted to address these challenges through
various innovative approaches. Traditional methods using Spectral Kur-
tosis (SK) (Antoni, 2006) have been enhanced through developments
such as CYCBD, (Peng et al., 2023), which improves robustness against
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Fig. 2. Schematic representation of the wind turbine system structure.

Fig. 4. Defects on the worn inner surface of rolling bearings, highlighted by red dotted areas indicating inner race failures. (a) Inner race electrical corrosion failure
of the bearing; (b) Worn inner surface of the bearing inner race; (c) Roller of the wind turbine bearing.

non-Gaussian noise, and the ARKurtogram method (Peng et al., 2024),
which enables automated and noise-resistant bearing fault detection.
Other notable advances include the Cyclogram (Li et al., 2023) for im-
proved frequency band selection, the STAKgram method (Jia et al,,
2024), the Ensefgram (Wang et al., 2024), the SEACKgram (Wang et al.,
2025), and the IESFSIOgram (Sun et al., 2025) for handling complex
interference. However, these approaches still demonstrate considerable
sensitivity to operational parameters and often rely on complex post-
processing strategies.

To address the inherent complexities and limitations of previous
fault diagnosis techniques, which have demonstrated considerable sen-

sitivity to operational parameters and frequently relied upon complex
post-processing signal strategies to manage interference, this research
presents a novel methodological framework. Traditional approaches
have proven insufficiently robust, particularly in scenarios characterized
by multivariate random pulse noise, thus necessitating the development
of an innovative strategy that can effectively address these challenges.
The proposed methodology in this paper proposes a sophisticated ap-
proach designed to systematically suppress transient interference noise
directly associated with non-stationary vibration signals. Specifically,
this method exploits the fundamental properties of non-stationary sig-
nals observed in mechanical vibrations when subjected to transient noise
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visualization of original and reconstructed signals.

interference. Through this strategic approach, the method endeavors to
enhance the robustness of the demodulation process against transient
noise, thereby facilitating a more precise and reliable selection of de-
modulation bands.

To accomplish these objectives, the methodology encompasses sev-
eral key components. Initially, it introduces an adaptive signal regime
specifically designed for identifying and tracking transient shifts in the
signal through a novel adaptive signal tracking mechanism, which in-
corporates real-time transient shift identification and dynamic thresh-
old adjustment. This regime systematically addresses the challenges of
non-stationary vibration signals by exploiting their fundamental prop-
erties when subjected to transient noise interference. The mechanism’s
adaptive nature ensures robust detection of signal variations even un-
der complex operating conditions, enhancing the overall demodulation
process. Subsequently, it establishes a comprehensive signal transition
model termed Dynamic Markov Transition Frequency with Adaptive
Peak Rates (DMTF-APR). This model integrates state transition matri-
ces with adaptive peak rate analysis, providing precise tracking and
identification of abnormal signal components. The model’s transition
matrix serves as an advanced temporal monitor, continuously evaluat-
ing signal state evolution and facilitating accurate abnormality detec-
tion. Finally, it proposes a Multi-Period Weighted Average Framework
(MPWAF) for anomalous signal fragment mitigation that identifies and
replaces anomalous signal fragments using periodic characteristics and
weighted averages. This framework effectively mitigates transient inter-
ference noise, enabling more precise and reliable selection of demodu-
lation bands. The framework’s effectiveness has been validated through
extensive experimental studies using real-world wind turbine farm data,
demonstrating superior performance in fault diagnosis, particularly in

challenging scenarios involving non-Gaussian or transient noise inter-
ference.

The principal contributions of this research can be summarized as
follows:

1. A novel adaptive signal tracking mechanism is proposed, which
incorporates real-time transient shift identification and dynamic
threshold adjustment, enabling robust detection of signal variations
in complex operating conditions.

2. An innovative Dynamic Markov Transition Frequency with Adaptive
Peak Rates (DMTF-APR) model is developed, which integrates so-
phisticated state transition matrices and adaptive peak rate analysis,
facilitating precise abnormality detection and temporal monitoring
of signal characteristics.

3. A Multi-Period Weighted Average Framework (MPWAF) identifies
and replaces anomalous signal fragments using periodic characteris-
tics and weighted averages, effectively mitigating transient interfer-
ence noise to enable more precise and reliable selection of demodu-
lation bands.

4. The effectiveness of the proposed method is validated through com-
prehensive experimental studies using real-world wind turbine farm
data, demonstrating superior performance in fault diagnosis com-
pared to existing approaches, particularly in scenarios with non-
Gaussian or transient noise interference.

The comprehensive research framework is systematically structured
and organized as follows: Initially, Section 2 presents a thorough re-
view and critical analysis of the primary metrics employed in the iden-
tification of signal status transformation, while establishing the the-
oretical foundation for the subsequent methodological development.
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Fig. 10. Comparative analysis in Case I: (a) Weak interference signal characteristics, (b) Post-Interference substitution signal profile.

Following this foundational overview, Section 3 introduces and elab-
orates on the proposed Dynamic Markov Transition Frequency with
Adaptive Peak Rates (DMTF-APR) model, delineating its mathemati-
cal formulation and operational principles. To demonstrate the prac-
tical efficacy and robustness of the proposed methodology, two dis-
tinct case studies are presented in Section 4. The first case study
employs validation datasets acquired from a real-world wind tur-
bine farm to evaluate the methodology’s effectiveness under authen-
tic operational conditions. Subsequently, the second case study uti-

lizes laboratory-generated datasets to further validate the method-
ology’s performance under general operating conditions, particularly
focusing on scenarios where transient noise interference introduces
additional complexity to the measurement data. The research inves-
tigation concludes in Section 5, where the key findings are synthe-
sized and critically analyzed, accompanied by comprehensive insights
into the broader implications of the proposed method for fault diag-
nosis applications, as well as potential directions for future research
endeavors.
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2. Related theory

In this section, the primary metric employed for the detection of sig-
nal transformations is revisited, and it should be further analyzed. Es-
tablished methodologies, such as Short-Time Energy (STE) (Schirmer
and Mporas, 2020), Short-Time Kurtosis (STK) (Alimi and Awodele,
2022), and Short-Time Zero Crossing Rate (STZCR) (Schirmer and Mpo-
ras, 2020; Chen et al., 2023a), have proven to be critical in the identifi-
cation of anomalous signal patterns. These methodologies offer insights
into various aspects, including peak ratios, energy deployment, and the
frequency of zero crossings, thereby contributing to the field.

When analyzing real-world discrete signals, these signals are often
represented as a time series, symbolically denoted as [x,,], where n spans
from the initial point of 1 to the termination point N. The signal can be
calculated using the following equation:
xy[m] =x[m+ f - h] - wlm] (€]

where m represents the time index, f denotes the frame index, and
h specifies the duration of the sliding window. The application of a
window function, typically a rectangular one labeled w, ensures even
weighting across all frame samples, leading to more accurate signal cal-
culations.

Subsequently, the procedure incorporates the identification of local
maxima within each segment of the signal encapsulated by the sliding
window. A peak is recognized when a data point’s amplitude exceeds
those of its immediate neighbors. This principle is succinctly represented
in the following formula:

x[m] — x[m—1]> 0,
2
x[m+1]=x[m] <0

The identification of local peaks indicative of signal alterations ne-
cessitates an assessment that accounts for the magnitude of eachpeak.
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Relying solely on amplitude, as is common in some prevalent techniques
(Schirmer and Mporas, 2020; Alimi and Awodele, 2022), risks obscuring
the signal’s intrinsic variations due to noise interference. By introducing
a defined threshold, m,, the process of detecting local maxima amidst
variable and intermittent noise interference is refined. This refinement
facilitates consistent observation of signal transitions and enhances pre-
cision in identifying discrepancies.

x[m] — x[m — 1] > my
x[m+ 1] = x[m] < my 3)

After the filtering process, local peaks that meet specific criteria, de-
noted as N, are pinpointed within a designated sliding window. Follow-
ing this, the ratio of N, to the total number of samples in the windowis

accurately calculated, which defines the Short-Term Local Peak Rate
(STLPR):

NP
STLPR = o ()]

where M represents the length of the window function.

The evaluation of local maxima through the sliding window frame-
work is facilitated by Eq. (4), which accurately measures the aggregation
of outlier points within the signal’s active window.

3. The proposed methodology of dynamic Markov transition
frequency with adaptive peak rates (DMTF-APR)

As previously discussed, the accuracy of anomaly detection is sig-
nificantly influenced by the careful selection of a conditional local peak
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threshold, denoted as m,. Traditional methods frequently exhibit vulner-
ability to non-Gaussian noise, and they encounter substantial challenges
in adapting to the variability inherent in signal properties. In response
to these issues, Dynamic Markov Transition Frequency with Adaptive
Peak Rates (DMTF-APR) method has been proposed. This approach in-
volves a systematic sequence of steps designed to automatically adjust
the threshold, thereby eliminating the need for complex manual settings
and substantially enhancing the system’s adaptability to intricate signal
environments. The methodology encompasses several principal compo-
nents: initial signal processing, Markov modeling to monitor temporal
state changes, dynamic peak-rate analysis of discrete transfer frequen-
cies, adaptive adjustment of the anomaly percentage, and the deter-
mination of robust exception boundaries for multiple bins. The frame-
work of this proposed method is depicted in the flowchart below, see in
Fig. 1.

3.1. Wavelet-based signal decomposition and Markov state initialization

Initially, the Discrete Wavelet Transform (DWT) is utilized due to
its attributes of smoothness and superior frequency and time resolution,
providing an effective means for the initial analysis of signals and the
identification of transients and anomalies. By decomposing a vibration
signal x(t), the DWT produces two primary coefficients: the approxi-
mation coefficient cA; , which captures general trends, and the detail
coefficient ¢ D; ,, which highlights minute variations.

+o0 +o0
X(t)= Y A+ D eDj (0 5)
k=—00 k=—o00

where j represents the scale factor of the wavelet, while kdetermines its
shift factor, thereby establishing the central position. The function ¢; ,
and y; , correspond to the wavelet and scale functions, respectively.
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During the discrete wavelet transform decomposition, higher-level
approximation and finer detail coefficients are progressively acquired
at each stage. This enables the preservation and retrieval of signal char-
acteristics across different frequency ranges and levels until the target
decomposition level is reached. This process can be mathematically rep-
resented by the following expressions:

cAj =Y hin—2klx;_,
n

(6)
cD;, = Z gln— 2k]xj_]’n

where h[n] and g[n] serve as the low-pass and high-pass filters, respec-
tively. The variable x;_, , represents the low-frequency component of
the current approximation coefficient, reflecting the global and long-
term trends of the entire signal.

10

Subsequently, the approximation and detail coefficients undergo fur-
ther processing through thresholding and filtering operations. The pro-
cessed approximation coefficients, denoted as cA’, are derived from the
application of a Butterworth filter. This procedure is mathematically ar-
ticulated as follows:

M N
Al = Zb" ccA,_; — Zaj -cAl
i=0 j=1

The Butterworth filter has feed-forward coefficients b, and feed-
back coefficients g;. In this case, the index j begins at 1 and q is set
to 1 for normalization. Then, soft-thresholding is applied to the de-
tail coefficients ¢D’’ at each decomposition level to effectively reduce
noise:

cD;={sgn(cD,»)(|cDi|—e) | eD; |> €

0 | eD;|< €

)

(8)
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indication.

The threshold value ¢ is a specified proportion of the maximum value
of ¢D;, articulated as follows:
£ = e - max (cD,») ()

After the coefficients are processed, they are recombined via the
Inverse Discrete Wavelet Transform (IDWT) to form a new signal se-
quence. This reconstructed sequence is crucial for retrieving important
signal information and eliminating noise and other disturbances. The
reconstruction is represented mathematically as:

) (cA§,k¢j,k<r>+ ) cD},kwj.k(ﬁ)

j=—o0 k=—c0

2= (10)

The reconstruction process is essential, as it aids in identifying peaks
that deviate from the mean of the original signal, as specified by the
following condition:

IT = {ilx;() >t vx;(t) < —7,i € {1,...,|n|}} 1D

11

where 7 represents the mean of the original signal. Consequently, the
peak retrieval in the reconstructed signal is expressed as:

x;(1),

R0 = A‘( )
x,’(’),

Lastly, a Markov model is employed to statistically capture and de-
scribe transition patterns among states in the reconstructed signal, re-
flecting the principle that a system’s future state is solely dependent

on its current state, irrespective of prior states. This is captured by the
following first-order Markov model formula:

ifiell

12
ifi gl 12

P(x; | X1, X g xp) = P(x; | x,_y) 13)

The above expression indicates that the probability of transitioning
to the subsequent state, x;, is entirely contingent upon the current state,
Xi_1-

In Markov chains, each step can involve either a transition from one
state to another state or the retention of the current state. This transi-
tion process is determined by a predefined probability distribution. The
determination of the current state relies solely upon the most recent pre-
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Fig. 21. Case II: (a) Raw signal, (b) Level 1 approximation coefficient, (c) Detail coefficient (level 1), (d) Detail coefficient (level 2), (e) Detail coefficient (level 3),
(f) Low-pass filtered approximation coefficients, (g) Thresholded detail coefficients and (g) Raw and reconstructed Signals.

ceding state, embodying the renowned Markov property, which posits
that the future state depends only on the present state and is indepen-
dent of the sequence of events that preceded it. This specific dependency
is quantified through a transition probability matrix. This matrix enu-
merates the conditional probabilities of transitioning between all con-
ceivable pairs of states. For a system comprising n states, this matrix
provides an exhaustive overview of n? potential transition scenarios.
The matrix is formulated using a defined approach as follows:

P11 P12 Pij
P P2 Pij

MTPM = : (14)
Pin DPij

Pin

3.2. Dynamic Markov transition frequency with adaptive peak rates

Prior to establishing a Markov model, signal discretization is refined
through equal-interval segmentation. This approach allocates the ampli-
tudes of the cleaned signals, which are reconstructed via wavelet trans-
formation, to fixed intervals, denoted by j. Each partition corresponds
to a discrete level of signal amplitude, which is then mapped onto a
discrete set of state spaces .S;, effectively serving as the nodes within
the Markov model. Through this method, complex signals are translated
into a streamlined discrete format. This transformation, delineated by
Eq. (10), allows the Markov model to track interval sequences rather
than precise amplitude values, as indicated by Eq. (15). Consequently,
this enhances the ability to differentiate between typical and atypical
states, as transitions between these discrete states reflect the intrinsic
laws of the signal. This, in turn, facilitates the construction of Markov
models that effectively capture the time series and the inherent random-
ness of signals.

s, = {j x,lil1 € S;

xn[i] = max (X,,),j = Mpin — 1 (15)

12

The initial signal is then segmented into states denoted as .S;. In this
specific scenario, the signal is divided into 10 distinct intervals, repre-
sented as ny;, = 10.

= [min (x,) + (= 1)- AL,min (x,) +j - AL]

max (x,) (16)

— min (x,,)
Mpin

where AL signifies the consistent division used for discretizing signals,

and n,;, defines the level of detail and clarity in the portrayal of discrete

states within the analysis of Markov models.

Subsequently, the occurrence counts of signal transitions in each bin
are tallied. Building upon this, the first derivative is calculated to ob-
serve the trend of signal transition counts as a function of bin variation.
Under typical circumstances, given the amplitude distribution of dis-
crete signals, most regular signals cluster around the central bin values,
resulting in a bell-shaped trend that rises and declines gradually. When
the first derivative reaches a minimum value, it marks the point where
the signal transition count peaks before declining, signifying a reduc-
tion in the proportion of normalcy. Further analysis through the second
derivative helps identify areas where the first derivative’s rate of change
of begins to slow, indicating a deceleration in the decline of signal tran-
sition counts. The bin corresponding to the second local maximum of
the second order derivative marks the onset of this slowing trend. Bins
following this point are characterized as exceptionally high-value inter-
vals and flagged as anomalous, exemplifying significant deviations from
the norm in signal transition patterns. This distribution-based method
provides a statistical mechanism to identify and pinpoint unusual be-
haviors within the signal. Additionally, the ratio of these abnormal bins’
frequency to the total frequency serves as the baseline for quantifying
the percentage of signal anomaly. This process is shown in the formula
below:

n—1 2 pnymax
o YT I(ANg, < 0)- A2N !

: -w a7)
o N
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Fig. 26. Case II: (a) Signals with random interference, (b) Vibration signal with Interference substitution.

where I denotes the indicator function, A represents the first derivative,
while A? stands for the second derivative, and w is an adjustment weight
factor, provided in subsequent calculations.

Next, the signal amplitude is reordered in descending order. During
this process, the previously defined percentage baseline index is used
as a dividing line, further dividing the signal into two segments. Among
them, the high-value region on the left side of the dividing line is defined
as an abnormal amplitude, while the part on the right is recognized as
normal amplitude. When determining a signal’s peak rate, a key aspect
is to set an appropriate amplitude threshold, and choosing the amplitude

height difference as the threshold is a reasonable approach. Therefore,
the average of the signal areas on the left and right of the baseline is
calculated and subtracted to establish a threshold, as illustrated in the
following formula:

7o (vl v R
Md - (Xindex - Xindex) (18)
where XL and XR  represent the mean of the amplitudes on the
index index

left and right sides of the baseline in descending order, respectively.
In observing the process of determining the baseline, it becomes ev-
ident that manual fine-tuning to derive threshold values often results in

14
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deviations. This deviation is marked by a lower threshold as the baseline
shifts to the right (i.e., as the index increases), leading to the identifica-
tion of more peaks and a higher chance of false positives. To address this
issue, an adjustment weighting factor is introduced to shift the baseline
to the left (i.e., decrease the index).

Once the state sequence is obtained, a matrix is constructed using the
Markov Transition Matrix (MTM) to determine the frequency of transi-
tions from one state to another. This matrix plots these transition fre-
quencies, with each element denoted as A}/".

n—1

Af}"M = 25(8" =i, =) (19)
0

where §(x, y) represents the Kronecker Delta, which yields a value of 1
if x equals y and O in all other cases. N indicates the total number of
states in the sequence .S.

Subsequently, much like distinguishing between normal and abnor-
mal baselines, it is imperative to identify and eliminate the frequencies
of regular transitions within the Markov transition frequency matrix.
This reconfiguration retains only the frequencies of distinctive transi-
tions, effectively isolating atypical transfers from commonplace ones.
The resulting matrix exclusively maps these specialized transitions, ef-
fectively filtering the data for enhanced specificity. This process is illus-
trated in the formula below:

n—1n-1
0=a.ZZA3.”M (20)
i=0 j=0
LY MTM
Af‘.”M/= 0 Tfl—] orAl.j >0 1)
J A{‘I,"M ifi # j and Ag”M <0

where «a signifies the proportion of standard transition occurrences rel-
ative to the aggregate frequency, determined to be 0.1. 6 refers to the
determined normal transfer frequency.

The state matrix, denoted as M p,, is normalized through the exclu-
sion of standard elements. This process culminates in the emergence of
a novel Markov transition matrix elements denoted by P,;, which am-
plifies the prevalence of atypical transitions within the matrix. It intri-
cately outlines the probability of shifting from any state i to a different

15

state j.

AMTM
J (22)

Py=
n=1 yMTM' 0
Toy AT~ (14 4)

where the variable A% refers to the count of regular transitioning ele-
ments in the specified row which exceed a threshold value, represented
by 6.

Next, The transformation process involves unfolding the transition
probability matrix Myp,, into a one-dimensional vector, represented
as Fy,..q- Following this, every non-zero element within this vector is
painstakingly singled out. These elements are then organized in a de-
scending arrangement.

Fsorted = sortdesc( [sz | Pij >0, VG, j) € Q(MTPM)]) 23)
where Q(My p,,) represents the indexes for all non-zero elements.

Building upon this, the mean of the sorted probabilities is deter-
mined, symbolizing the central tendency of anomalous transitions and
reflecting the overall status of anomaly probabilities. This approach,
when used in conjunction with the amplitude of anomalous signals
placed on the left side of the sorted baseline, utilizes the mean of this
probability matrix as the adjustment factor w, enabling the formulation
of a more robust Peak Rate (PR), as illustrated in the following formula:

M-2
1 . .
PR= - Z(") I((Ax, > My) A (X, > M) (24)

where I denotes the indicator function and Ax, represents the value of
X, — x,_;. This function assigns a value of 1 when the argument enclosed
within it is positive and assigns a value of 0 otherwise.

Following a comprehensive analysis of the Dynamic Markov Tran-
sition Frequency with Adaptive Peak Rates (DMTF-APR) across the en-
tirety of the signal spectrum, the calculated average values are systemat-
ically employed not only to establish a robust threshold for detecting ab-
normal boundaries but also to define an adaptive fault-tolerant window
that enables the identification of previously overlooked anomalies. Sub-
sequently, precise modifications are meticulously applied to specific seg-
ments of the original signal that correspond to these identified frames,
particularly where amplitude spikes require regulation. This procedure
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can be expressed through the following formula.

G-1
B= {g | PRIg] > 7 - <é 3 PR[g])}
g=0

where B defining anomaly boundaries, y as the average coefficient.

After identifying potential anomalous locations, a sieving mecha-
nism is introduced to analyze anomalies across different bins. By ag-
gregating results from multiple bins, calculating the frequency of occur-
rence for each location, and applying frequency distribution, the most
likely anomaly positions are selected. This process ensures high robust-
ness and accuracy by integrating information from multiple bins.

Due to the stiffness of the absence of anomalous fragments, the am-
plitude and frequency characteristics of the time series need to be con-
sidered. The highest amplitude of each frequency is calculated and the
mean value is extracted, the first k frequencies with the highest ampli-
tude are selected from these amplitudes, and finally, the corresponding
period is calculated for each selected frequency, so as to capture the
periodic characteristics of the signal more accurately, so as to make an
effective time series replacement while preserving the basic character-
istics of the signal. The process can be computed as follows.

(25)

T T TAEL

(26)
Topk(Avg(IFFT(X,)]))

where Topk(Avg(|FFT(%,)|)) represents the k highest values selected from
the averaged frequency amplitudes obtained through Fast Fourier Trans-
form analysis.

Furthermore, the weight coefficient w; for each epoch p; must be de-
termined. This weight is mathematically defined as the ratio of the ith
frequency’s amplitude to the cumulative sum of all selected frequency
amplitudes. This normalization ensures that the sum of weights equals
unity, thereby establishing a more robust foundation for subsequent
weighted average calculations:

w = —AMPUD ik

L Amp(r)
where Amp(-) denotes the amplitude calculation operator.

For the purpose of anomalous fragment replacement, it is essential to
compute the weighted average across multiple distinct periods. To facil-
itate this, we define the set C;(r) as the collection of non-missing value
indices corresponding to time point ¢ within each epoch p;, expressed
as:

(27)

C(n = {(t—j)molej:O,l,Z,..., FJ}

(28)

Through comprehensive analysis and iterative computations, the
final prediction value is derived by systematically aggregating the
weighted averages across all temporal periods, whereby the Multi-
Period Weighted Average Framework (MPWAF), as formulated in (29).
This framework not only identifies but also systematically replaces
anomalous signal fragments by leveraging inherent periodic character-
istics and optimized weighted averages. Consequently, the framework
effectively mitigates transient interference noise, which in turn enables
significantly more precise and reliable selection of demodulation bands
for subsequent signal analysis.

k

1
" L= w,; » —m—
yﬂredlcr ; i |Ci(t)|

such that [(z — j) mod N]missing =0

Y %ljlne(g-M,g-M+h).,VgeB
JEC;(@)

(29)

This comprehensive methodological framework serves the dual pur-
pose of effectively mitigating anomaly-induced distortions while pre-
serving the signal’s fundamental characteristics. The mathematical rigor
employed in this approach ensures robust signal reconstruction while
maintaining the integrity of essential temporal patterns and relation-
ships within the data structure. The process is outlined in the pseudo-
algorithm presented in Algorithm 1.
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Algorithm 1 Dynamic Markov Transition Frequency with Adaptive Peak

Rates (DMTF-APR).

Phase I: Multi-Resolution Wavelet Decomposition and Signal Re-
construction

Input: Original temporal vibration sequence: x(r)
1: Implementation of Discrete Wavelet Transform decomposition:
x(0) = T2 A b0+ X2 eDj vy (0D
2: Extraction of approximation and detail coefficients: cA; , and ¢D;
3: Application of adaptive filtering to cA; , and soft thresholding to
eDj
4: Signal reconstruction via Inverse DWT:
f =32 (cA;._qu OED cD;kaj,k(t))

Output: Processed signal %(7)

Phase II: Dynamic Peak Rate Analysis and Threshold Optimization

Input: Reconstructed signal %(r)
5: Implementation of uniform signal discretization

6: Computation of second-order derivatives and adaptive threshold:
S I(ANg, <0)-A2 NTX
—_—

TN
7: Generation of Markov transition frequency matrix: MT M

index =

8: Normalization of transition probability matrix: T PM
9: Estimation of optimal peak rate threshold:
7o (%L v R

Md - (Xindex - Ximlex)
Output: Optimized threshold M,
Phase III: Statistical Validation and Signal Enhancement
Input: Derived threshold M,
10: Computation of temporal peak rate utilizing threshold:

PR= L Y2 1((Ax, > Mg) A(Ax,yy > M)
11: Definition of anomalous signal regions:

= (L yo-t

B={g|PRIgI> 7 (4 Z03 PRIg)) }

12: Implementation of amplitude constraint for anomaly mitigation:
1 .
Yorediet = X w ol ZiecnXililn€(g-M,g-M+h),Vg B

Output: Enhanced signal £(r) with controlled interference

4. Experimental validation analysis

To rigorously evaluate and validate the effectiveness of the proposed
methodology, two distinct case studies will be conducted. The first case
study, detailed in Section 4.1, examines a real-world wind farm ap-
plication, whereby the dataset has been systematically collected from
an operational wind farm located in LU NAN, China. Furthermore, the
second case study, presented in Section 4.2, involves an experimental
test-rig of a gear transmission system, which serves to demonstrate the
method’s efficacy in gear fault diagnosis through controlled laboratory
conditions. These complementary studies were specifically selected be-
cause they represent both field-based and laboratory-controlled envi-
ronments, thus providing comprehensive validation across different op-
erational contexts.

4.1. Case study I

4.1.1. Testrig and data acquisition

The proposed methodology for fault diagnosis in wind turbine sys-
tems, particularly focusing on generator bearing diagnostics, has been
extensively validated through empirical vibration data collected from an
operational wind farm situated in LU NAN, China. The primary subject
of investigation is a doubly-fed induction generator (DFIG) wind turbine
system, whose detailed configuration is illustrated in Fig. 2. This partic-
ular installation comprises an offshore 1.5-MW three-bladed horizontal
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axis system, which represents a commonly deployed configuration in
modern wind energy applications.

To enable comprehensive monitoring, twelve accelerometers were
strategically positioned along various points of the turbine’s transmis-
sion line. While multiple data channels are available, this study specif-
ically emphasizes measurements obtained from channel 05, which is
prominently highlighted within a dotted square on the generator dia-
gram in Fig. 2. Moreover, the actual mounting configuration is depicted
in Fig. 3, where it is evident that channel 05 is optimally positioned at
the generator’s input shaft, ensuring the shortest proximity to the mon-
itored bearing among all installed accelerometers. Additionally, Fig. 4
illustrates the defects on the worn inner surface of rolling bearings, with
red dotted areas marking inner race failures.

Wind turbine operations are inherently influenced by variable input
rotational speeds, which arise from a combination of factors, including
stochastic wind patterns, non-stationary load distributions, and dynamic
transmission torques. Such variability poses a substantial challenge in
developing reliable fault diagnosis protocols for operational wind tur-
bine systems. Therefore, to establish consistent monitoring procedures
while maintaining acceptable accuracy, it was necessary to analyze vi-
bration measurements across a wide range of working conditions. How-
ever, particular attention was given to vibrations occurring at a typical
rotational speed of 1080 r/min, as these conditions represent critical op-
erational parameters.

The actual monitoring protocol was implemented under the follow-
ing specified conditions:

1. In accordance with the established monitoring schedule, data collec-
tion was conducted at semi-monthly intervals. The system employed
a sampling frequency of 20,000 Hz, whereby 15 distinct data sets
were collected at random intervals within each 24-h monitoring pe-
riod for comprehensive analysis.

2. Given the inherent variability of meteorological conditions, achiev-
ing consistent rotational speeds of precisely 1080 r/min proved chal-
lenging. Therefore, to maintain the integrity of the health condition
monitoring system, actual data collection dates occasionally devi-
ated from the predetermined sampling intervals, though this was ac-
counted for in the subsequent analysis.

4.1.2. Comparative analysis and results validation

The experimental analysis begins with a raw vibration signal, as il-
lustrated in Fig. 5(a), which is inherently subjected to multiple forms
of interference. These disturbances encompass diverse random exter-
nal transient perturbations characterized by variable amplitudes across
both high and low frequency spectra, while simultaneously being con-
taminated by environmental noise, predominantly of Gaussian nature.
To facilitate a comprehensive and methodologically rigorous analysis of
this complex vibration signal amid such noise conditions, it becomes im-
perative to implement sophisticated pre-processing techniques. In this
context, the Discrete Wavelet Transform (DWT) emerges as a particu-
larly suitable methodology, having demonstrated robust capabilities in
signal decomposition while maintaining the integrity of intrinsic signal
dynamics. Consequently, the level 1 approximation coefficient, which
effectively encapsulates these preserved dynamic characteristics, is vi-
sualized in Fig. 5(b). Furthermore, the detailed coefficients at successive
levels 1, 2, and 3, derived through systematic DWT implementation, are
methodically presented in Fig. 5(c)-(e), respectively.

A comprehensive examination of the high-frequency components
illustrated at each decomposition level reveals their exceptional ca-
pability to capture rapid signal variations, which frequently serve as
critical early indicators of significant events in the signal’s behavior.
Conversely, the low-frequency components effectively demonstrate the
fundamental structure and long-term evolutionary trends of the signal.
The optimization of these coefficients through strategic application of
low-pass filtering and threshold processing techniques proves crucial
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for enhancing signal clarity and interpretation. This methodological ap-
proach effectively eliminates minor perturbations, substantially reduces
noise artifacts, and simplifies the signal’s complexity while maintaining
its essential characteristics. Consequently, the long-term stability fea-
tures of the signal become more prominently emphasized, and small-
scale interferences are effectively suppressed, as evidenced in Fig. 5(f),
(g). The reconstructed signal following wavelet transformation exhibits
notable qualitative and quantitative advantages. Fig. 5(h) presents a
comparative analysis between the original and reconstructed signals,
demonstrating the significant impact of the implemented filtering and
threshold processing techniques. The processed signal not only success-
fully eliminates unwanted noise but also enhances the distinctive fea-
tures of significant external interferences, thereby improving the clarity
of anomalous signal variations. Through this focused approach to core
information extraction, the method substantially enhances both the pre-
cision and reliability of anomaly detection processes.

The methodology proceeds with a crucial signal processing step that
involves partitioning the reconstructed signal into discrete states, as
formally defined in Egs. (15) and (16). In this process, the number
of dynamically partitioned intervals is systematically varied between
10 and 20 to ensure comprehensive analysis. The resultant discrete
signals demonstrate distinctly quantifiable distribution intervals under
both standard operating conditions and noise-influenced scenarios, as
comprehensively depicted in Fig. 6(a). Subsequently, building upon the
equidistant discretization results, the derivatives of each transition fre-
quency undergo rigorous statistical analysis to compute higher-order
derivatives of the signal state distribution. This mathematical approach
facilitates the identification and characterization of underlying transi-
tion patterns between signal states.

As evidenced in Fig. 6(b)—(g), the amplitude distribution of the dis-
crete signals exhibits a pronounced concentration in the central inter-
val, manifesting as a characteristic Gaussian-like distribution. The first-
order derivative’s minimum value serves as a critical indicator, denoting
the peak of signal transition frequency and thereby marking the cru-
cial point where the proportion of normal states initiates its decline.
Furthermore, through second-order derivative analysis, regions of de-
creased rate change in the first-order derivative are identified, thus in-
dicating a significant deceleration in signal transition frequency reduc-
tion. Notably, the second local maximum of the second-order deriva-
tive demarcates the onset of this deceleration trend. Consequently, in-
tervals occurring after this pivotal point are classified as abnormal, since
their signal transition patterns demonstrate substantial deviation from
established normal conditions. This comprehensive analysis enables
the precise calculation of anomaly percentage indices for both normal
fault source signals and abnormal interference source signals, thereby
establishing essential parameters for subsequent peak rate threshold
analysis.

Following the equidistant discretization process, two distinct heat-
map visualizations are employed to elucidate the frequency and proba-
bility distributions of the Markov signals. Specifically, Fig. 7(a), presents
the frequency heat-map of Markov signals, offering valuable insights
into the regularity and patterns of state transitions within the Markov
process. The pronounced diagonal elements indicate predominant sta-
bility in state patterns, while the bright off-diagonal elements reveal
significant state transitions, thereby providing evidence of the system’s
inherent dynamics and potential anomalies.

A notable observation pertains to the presence of darker regions de-
lineated by white boundaries, both along and distant from the diago-
nal. These white boundaries signify statistically infrequent or anoma-
lous transition behaviors within the signal. The prominence of these
boundaries serves as a quantitative indicator of the occurrence rate of
these low-probability transitions. Subsequently, strategic adjustments to
the heat-maps are implemented, including the systematic exclusion of
self-transition frequency elements on the diagonal and the removal of
high-frequency transitions off the diagonal. This refined process, accom-
panied by matrix normalization, results in a modified transition proba-
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bility matrix, as depicted in Fig. 7(b). These methodological adjustments
effectively enhance the significance of lower-frequency transition ele-
ments, thereby expanding the dynamic range of the matrix and facilitat-
ing more nuanced identification of subtle changes or transition patterns
that might otherwise remain obscured in the frequency matrix.
Subsequently, the mean of non-zero probabilities in the Markov
transition probability matrix, calculated according to Eq. (23), is
utilized as a crucial adjustment parameter in Eq. (17) to determine
the anomaly percentage index. This index is systematically marked
on the signal arranged in reverse order, as illustrated in Fig. 8.
Through the application of Eq. (18), a significant red baseline emerges,
effectively partitioning the sorted signal into two distinct regions.
The adaptive peak rate threshold M, is then precisely determined
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through the calculation of the differential means between these two
regions.

To rigorously evaluate the efficacy of the proposed methodology in
monitoring signal state transitions, comprehensive comparisons were
conducted against several well-established techniques, including Short-
Time Energy (STE) (Schirmer and Mporas, 2020), Short-Time Zero-
Crossing Rate (STZCR) (Schirmer and Mporas, 2020; Chen et al., 2023a),
and Short-Time Kurtosis (STK) (Alimi and Awodele, 2022). These com-
parative analyses are systematically presented in Fig. 9(b)-(f). The re-
sults demonstrate clear limitations in existing methods: the STZCR ap-
proach exhibits significant deficiencies in identifying transient noise in-
terferences, as evidenced in Fig. 9(c), while the STE method merely high-
lights two high-energy spikes (Fig. 9(b)), with the overall signal remain-
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ing notably cluttered. Although the STK method demonstrates relatively
stable performance (Fig. 9(d)), it remains susceptible to significant noise
from unrecorded signal components. In contrast, the Dynamic Markov
Transition Frequency with Adaptive Peak Rates (DMTF-APR) method,
illustrated in Fig. 9(e), exhibits superior performance characteristics,
consistently and accurately detecting all transient noise interferences
while maintaining robustness against other unknown signal distortions,
thereby establishing itself as a more reliable and precise tool for signal
state transition monitoring.

In accordance with Egs. (26)-(29), a proposed approach involving
the calculation of the period-weighted mean of key frequency domain
components is implemented to replace anomalous signal fragments. This
methodological enhancement serves the dual purpose of mitigating am-
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plitude interference while preserving the intrinsic amplitude-frequency
characteristics of the original time series, thereby substantially improv-
ing the reliability of fault diagnosis procedures. The efficacy of this dis-
turbance suppression mechanism is comprehensively demonstrated in
Fig. 10(a) and (b).

For comprehensive validation, the study employs multiple signal
processing techniques—namely Fast-Kurtogram, Beta-kurogram, Auto-
gram, and Infogram—in a comparative analytical framework. These
methods are systematically applied to three distinct signal categories:
original bearing vibration signals, signals exhibiting sensitivity to ran-
dom transient noise interference, and post-interference replacement sig-
nals. The demodulation band selection results for untreated signals are
meticulously documented in Figs. 11-14(a), “Demodulation Band Se-
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lection Analysis.” Subsequently, detailed envelope analyses utilizing
both Squared Envelope Spectrum (SES) and Logarithmic Envelope Spec-
trum (LES) methodologies are presented in the corresponding (b) and
(c) subfigures, yielding filtered central frequencies and bandwidths of
[2500 Hz, 1250 Hz], [1500 Hz, 8750 Hz], [416.6667 Hz, 3541.6667 Hz],
and [2500 Hz, 3750 Hz], respectively. However, a notable observation
emerges from the envelope analyses: the absence of the theoretically
calculated bearing characteristic frequency (BPFI = 319.769 Hz), indi-
cating a potential limitation in the initial analysis approach.

The impact of implementing different demodulation bands and en-
velope analysis on post-interference suppression signals is extensively
illustrated in Figs. 15-18. The optimized parameters for filtered cen-
tral frequency and bandwidth are established as [5000 Hz, 2500 Hz],
[1250 Hz, 1875Hz], [1250 Hz, 6875 Hz], and [5000 Hz, 7500 Hz]. Sig-
nificantly, the subsequent envelope analyses reveal distinct identifica-
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tion of multiple characteristic frequencies (BPFI, 2BPFI, 3BPFI),
thereby validating the robustness of the proposed methodological frame-
work in addressing transitional states under conditions of transient non-
Gaussian interference.

4.2. Case study II

4.2.1. Experimental configuration and data acquisition

The gearbox dataset, which serves as a comprehensive repository for
fault diagnosis research, originates from a meticulously designed gear
drive system that systematically encompasses multiple operating con-
ditions and fault types. As illustrated in Fig. 19, the experimental ap-
paratus comprises an integrated assembly of precision-engineered com-
ponents, including a high-resolution tachometer, a variable-speed drive
motor with precise control capabilities, a calibrated torque sensor for ac-
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curate measurement, a sophisticated two-stage parallel gearbox, a load
gearbox, and a programmable load motor, all of which work synergisti-
cally to simulate authentic industrial operating conditions. Of particu-
lar significance is the strategic positioning of the accelerometer, which
has been specifically mounted on an independent disk—a configuration
that has been empirically determined to optimize vibration detection
sensitivity and is depicted in enhanced detail in the magnified view of
Fig. 19.

To ensure the capture of high-frequency transients and subtle system
dynamics while maintaining signal fidelity, data acquisition is executed
at a sampling frequency of 12.8 kHz, thus providing exceptional tempo-
ral resolution for comprehensive analysis. Moreover, to investigate the
system’s behavioral characteristics across diverse operational scenarios,
the dataset encompasses an extensive spectrum of rotational speeds,
which are methodically modulated between 1600 and 2400 r/min. Fur-
thermore, the fundamental meshing architecture of the gears is precisely
delineated in Fig. 20(a), while the comprehensive internal structural
configuration of the parallel gearbox system is meticulously presented
in Fig. 20(b), wherein the faulty gear component is distinctively demar-
cated with dotted lines to facilitate precise identification.

To establish a rigorous foundation for fault diagnosis analysis, vi-
bration measurements are systematically acquired along the X-axis of
the accelerometer while maintaining the gear at a predetermined opera-
tional speed of 1600 RPM. Each operational state, including the baseline
healthy condition, comprises an extensive dataset of 768,000 discrete
measurements, collected over a carefully controlled duration of 60s.
Consequently, this comprehensive and methodically constructed dataset
serves as an invaluable resource for the development, validation, and re-
finement of fault diagnosis algorithms, thereby enabling researchers to
conduct thorough investigations of various operational states and fault
manifestations under rigorously controlled experimental conditions.

4.2.2. Comparative analysis and result validation

Fig. 21 illustrates the systematic decomposition and reconstruction
process through DWT, encompassing the original signal characteris-
tics, transformation procedures, and reconstructed outcomes. Upon ex-
amining Fig. 21(a), it becomes evident that the transient interference
patterns within the gear fault signal manifest substantially more com-
plex and stochastic characteristics compared to the bearing fault sig-
nal analyzed in Case 4.1. This heightened complexity consequently in-
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creases the likelihood of misidentification between fault vibration com-
ponents and interference patterns, potentially compromising diagnostic
accuracy. Therefore, through the implementation of sophisticated pre-
processing algorithms, extraneous background noise was systematically
attenuated while preserving crucial transient interference and fault com-
ponent characteristics, thereby establishing a robust foundation for sub-
sequent fault identification protocols.

Fig. 22 presents the quantitative analysis of discretization outcomes
across various equidistant intervals, incorporating both statistical sam-
pling point distributions and dynamic multi-order differential analyses.
The results demonstrate that the proposed second-largest value method-
ology effectively delineates the signal transition patterns from normal
to high-interval values across different partition configurations, thereby
establishing more precise boundaries between nominal and anomalous
states.

The transition frequency matrix depicted in Fig. 23(a) reveals the
comprehensive distribution of signal conversion patterns, with partic-
ular emphasis on the spatial concentration of normal self-transition
behaviors along the diagonal region. This distribution pattern indi-
cates that normal signal transitions predominantly occur within defined
parametric boundaries, while subtle anomalous transitions, induced by
stochastic disturbances, manifest in close proximity to the diagonal, es-
tablishing their contextual relationship with normal behavioral patterns.
Furthermore, through the exclusion of normal transitional elements and
subsequent normalization, as illustrated in Fig. 23(b), two distinct high-
lighted regions emerge along the diagonal, underscoring the statistical
rarity of anomalous conversion probabilities within normal transition
patterns.

The adaptive threshold, derived through the application of Egs. (17)
and 18, is visualized in Fig. 24. When applied to the modified peak rate
and compared against conventional signal transition analysis method-
ologies (Fig. 25), the results conclusively demonstrate the enhanced ca-
pability of the proposed approach in identifying stochastic and uncertain
interferences within complex operational environments.

Employing methodologies consistent with Case Study I, the Dynamic
Markov Transition Frequency with Adaptive Peak Rates (DMTF-APR)
indicator successfully identified and localized transient noise interfer-
ences. To preserve the integrity of amplitude-frequency characteristics,
the framework incorporates an innovative mechanism replacing anoma-
lous segments with normally weighted averages, thereby mitigating am-
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plitude interference effects and enhancing diagnostic reliability. As evi-
denced in Fig. 26, the seamless integration of replaced signals at original
anomaly points validates the effectiveness of this approach.

In this case study, the comparative analysis employed benchmark-
ing methods, specifically Fast-Kurtogram, Beta-Kurtogram, Autogram,
and Infogram. The processed signals underwent a validation process,
including the selection of demodulation bands and the execution of en-
velope analysis. The results of the demodulation band selection for the
unprocessed signals can be observed in Figs. 27(a)-30(a). Subsequent
envelope analysis utilized the Square Envelope Spectrum (SES) and Log-
arithmic Envelope Spectrum (LES), as shown in Figs. 27(b), (c), 28(b),
(c), 29(b), (c), 30(b) and (c). These figures reveal the center frequen-
cies and bandwidths determined by the selected methods, quantified as
[2133.3333 Hz, 1066.6667 Hz], [266.6667 Hz, 6266.6667 Hz], [266 Hz,
8000 Hz] and [2133.3333 Hz, 1066.6667 Hz]. Upon closer inspection,
the envelope analyses in Figs. 27(b), (c), 28(b), (c), 29(b), (c), 30(b)
and (c) do not show the bearing characteristic frequency. This absence
is noteworthy, particularly because it deviates from the theoretical cal-
culation, which yields a characteristic frequency of f = 7.73 Hz.

Following the identification and subsequent treatment of interfer-
ential elements through their replacement with weighted averages of
normal segments, a second phase of analysis was conducted. The re-
sults of this refined analysis are presented in Figs. 31(a)-34(a), which
collectively demonstrate the significant impact of utilizing different
demodulation bands and implementing envelope analysis on the pro-
cessed signal. Furthermore, Figs. 31(b), (c), 32(b), (c), 33(b), (c), 34(b),
and (c) provide comprehensive results of the envelope analysis utiliz-
ing both SES and LES methodologies. In this refined analysis, the de-
modulation parameters, specifically the filter center frequencies and
bandwidths, were precisely defined as [1600Hz, 800Hz], [200 Hz,
500 Hz], [200 Hz, 3300 Hz], and [3200 Hz, 4800 Hz]. Significantly, re-
gardless of the specific demodulation band selection methodology em-
ployed, the results consistently demonstrated clear distinguish ability
of multiple characteristic frequencies, including f,2f,3f, and their
higher-order multiples. This robust outcome provides substantial vali-
dation for the effectiveness of the proposed Dynamic Markov Transi-
tion Frequency with Adaptive Peak Rates (DMTF-APR) method, par-
ticularly in complex operational environments and specifically in the
context of diagnosing rotating equipment subject to random external
interference.

5. Conclusion

This research presents a comprehensive methodological framework
that effectively addresses the challenges of fault diagnosis in wind tur-
bine bearing systems through the integration of adaptive signal tracking,
dynamic Markov transition modeling, and enhanced noise suppression
techniques. The framework makes several significant contributions: su-
perior capability in capturing non-stationary fault signatures through
adaptive signal tracking, effective characterization of complex fault pat-
terns via dynamic Markov transition modeling, and successful minimiza-
tion of transient interference noise through enhanced suppression tech-
niques. Experimental results demonstrate significant performance im-
provements over existing approaches, particularly in challenging sce-
narios involving non-stationary signals and transient interference noise.
Field testing has validated the framework’s practical utility, showed im-
proved early fault detection rates and reduced false alarms, which di-
rectly contribute to more efficient maintenance scheduling and reduced
operational costs.

Building upon these achievements, several promising research di-
rections have been identified for future work. First, researchers aim to
integrate deep learning techniques for automated parameter optimiza-
tion and real-time adaptation, while also investigating the framework’s
applicability to other renewable energy systems and industrial equip-
ment. Moreover, the development of more efficient computational algo-
rithms is essential for enhanced real-time processing capabilities, and
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there are significant opportunities to explore integration with Indus-
try 4.0 technologies such as IoT sensors and cloud-based monitoring
systems.

Although this research has presented significant advancements,
certain limitations persist that warrant further investigation. Specif-
ically, researchers must address computational complexity to en-
able more efficient real-time processing, because the current sys-
tem requires substantial computing resources. Furthermore, there is
a need to reduce dependency on manual parameter tuning, and the
framework’s performance under extreme environmental conditions
and in scenarios with limited fault data must be improved. Finally,
broader validation across diverse turbine models and operational con-
ditions is necessary to ensure long-term reliability and generalizabil-
ity. Therefore, future efforts will focus on overcoming these chal-
lenges to further enhance the framework’s robustness and practical
applicability.

CRediT authorship contribution statement

Peng Chen: Writing — review & editing, Writing — original draft,
Validation, Supervision, Resources, Project administration, Methodol-
ogy, Investigation, Funding acquisition; Yuhao Wu: Writing — original
draft, Visualization, Validation, Software, Resources, Methodology, In-
vestigation, Data curation; Shuai Fan: Validation, Software, Resources,
Methodology, Formal analysis, Data curation; Changbo He: Validation,
Software, Resources, Funding acquisition, Conceptualization; Yaqiang
Jin: Validation, Resources, Methodology, Investigation, Formal analy-
sis; Junyu Qi: Validation, Software, Resources, Methodology, Investiga-
tion, Formal analysis; Chengning Zhou: Writing — original draft, Valida-
tion, Software, Resources, Methodology, Investigation, Formal analysis

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

Partial funding for this research has been provided by sev-
eral sources, including the National Natural Science Foundation of
China through Grant 52105111 and 52305085, the Basic and Ap-
plied Basic Research Foundation of Guangdong Province through Grant
2022A1515010859, and the Shantou University (STU) Scientific Re-
search Initiation Grant through Grant NTF21029, the Natural Science
Foundation of Sichuan Province under Grant 2023NSFSC0861, the
Nuclear Power Institute of China Original Foundation under Grant
KJCX2022YC111, the China Postdoctoral Science Foundation under
Grant 2023M740021, and the Natural Science Foundation of Anhui
Province under Grant 2108085QE229.

References

Alimi, S., Awodele, O., 2022. Voice activity detection: fusion of time and frequency do-
main features with a SVM classifier. Comput. Eng. Intell. Syst 13 (3), 20-29.

Antoni, J., 2006. The spectral kurtosis: a useful tool for characterising non-stationary
signals. Mech. Syst. Signal Process. 20 (2), 282-307.

Chen, B., Hu, Y., Wu, L., Li, H,, 2023a. Partial discharge pulse extraction and inter-
ference suppression under repetitive pulse excitation using time-reassigned multi-
synchrosqueezing transform. IEEE Trans. Instrum. Meas. 72, 3535609.

Chen, P., Xu, C., Ma, Z., Jin, Y., 2023b. A mixed samples-driven methodology based on de-
noising diffusion probabilistic model for identifying damage in carbon fiber composite
structures. IEEE Trans. Instrum. Meas. 72 (3513411), 1-11.

Chen, P., Li, Y., Wang, K., Zuo, M.J., 2020. A novel knowledge transfer network with fluc-
tuating operational condition adaptation for bearing fault pattern recognition. Mea-
surement 158, 107739.

Chen, P., Li, Y., Wang, K., Zuo, M.J., Heyns, P.S., Baggerohr, S., 2021. A threshold self-
setting condition monitoring scheme for wind turbine generator bearings based on
deep convolutional generative adversarial networks. Measurement 167, 108234.


https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100021171
https://doi.org/10.13039/501100021171
https://doi.org/10.13039/100009047
https://doi.org/10.13039/501100018542
https://doi.org/10.13039/501100018542
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0001
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0001
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0002
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0002
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0003
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0003
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0003
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0004
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0004
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0004
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0005
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0005
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0005
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0006
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0006
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0006

P. Chen et al.

Chen, P., Wang, K., Zuo, M.J., Wei, D., 2019. An ameliorated synchroextracting transform
based on upgraded local instantaneous frequency approximation. Measurement 148,
106953.

Chen, P., Ma, Z., Xu, C., Jin, Y., Zhou, C., 2024a. Self-supervised transfer learning for
remote wear evaluation in machine tool elements with imaging transmission attenua-
tion. IEEE Internet Things J. 11, 23045-23054.

Chen, P., Wu, Y., Xu, C., Jin, Y., Zhou, C., 2024b. Markov modeling of signal condition
transitions for bearing diagnostics under external interference conditions. IEEE Trans.
Instrum. Meas 73, 3518308.

Chen, P., Wu, Y., Xu, C., Huang, C.-G., Zhang, M., Yuan, J., 2025. Interference suppression
of nonstationary signals for bearing diagnosis under transient noise measurements.
IEEE Trans. Reliab. (Early Access).

Du, Y., Geng, X., Zhou, Q., Cheng, S., 2024. A fault diagnosis method for offshore
wind turbine bearing based on adaptive deep echo state network and bidirec-
tional long short term memory network in noisy environment. Ocean Eng. 312,
119101.

Huang, C.-G., Huang, H.-Z., Li, Y.-F., Peng, W., 2021. A novel deep convolutional neural
network-bootstrap integrated method for RUL prediction of rolling bearing. J. Manuf.
Syst. 61, 757-772.

Jia, M., Wang, J., Zhang, Z., Han, B., Bao, H., Wang, Y., 2024. Stakgram: a method
for optimal demodulation band selection in bearing fault diagnosis under complex
interference. Meas. Sci. Technol. 35 (12), 126134.

Jin, Y., Xin, G., Antoni, J., 2023. Towards automated, integrated and unsuper-
vised diagnosis of rolling element bearings. ~Mech. Syst. Signal Process. 203,
110691.

Kaewniam, P., Cao, M., Alkayem, N.F., Li, D., Manoach, E., 2022. Recent advances in
damage detection of wind turbine blades: a state-of-the-art review. Renew. Sustain.
Energy Rev. 167, 112723.

Li, B., Xu, X., Tan, H., Shi, P., Qiao, Z., 2023. Cyclogram: an effective method for selecting
frequency bands for fault diagnosis of rolling element bearings. Meas. Sci. Technol.
34 (9), 094003.

Liu, D., Cui, L., Cheng, W., 2023. Fault diagnosis of wind turbines under nonstationary
conditions based on a novel tacho-less generalized demodulation. Renew. Energy 206,
645-657.

Maldonado-Correa, J., Torres-Cabrera, J., Martin-Martinez, S., Artigao, E., Gémez-Lézaro,
E., 2024. Wind turbine fault detection based on the transformer model using SCADA
data. Eng. Fail. Anal. 162, 108354.

23

Ocean Engineering 325 (2025) 120798

Panagiotopoulos, A., Dmitri, T., Spilios, F.D., 2023. Damage detection on the blade of an
operating wind turbine via a single vibration sensor and statistical time series methods:
exploring the performance limits of robust methods. Struct. Health Monit. 22 (1),
433-448.

Peng, D., Zhu, X., Teng, W., Liu, Y., 2023. Use of generalized gaussian cyclostationarity for
blind deconvolution and its application to bearing fault diagnosis under non-gaussian
conditions. Mech. Syst. Signal Process. 196, 110351.

Peng, J., Zhao, Y., Zhang, X., Wang, J., Wang, L., 2024. An adaptive reweighted-kurtogram
for bearing fault diagnosis under strong external impulse noise. Struct. Health Monit.
23(6), 3336-3351.

Schirmer, P.A., Mporas, 1., 2020. Energy disaggregation from low sampling frequency
measurements using multi-layer zero crossing rate. In: ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
3777-3781.

Sun, W., Zhao, X., Liu, D., Cui, L., 2025. lesfsiogram: a novel adaptive method for opti-
mal demodulation band determination in bearing fault diagnosis. Measurement 246,
116554.

Wang, C., Qi, H., Hou, D., Han, D., Yang, J., 2024. Ensefgram: an optimal demodulation
band selection method for the early fault diagnosis of high-speed train bearings. Mech.
Syst. Signal Process. 213, 111346.

Wang, H., Yan, C., Zhao, Y., Li, S., Meng, J., Wu, L., 2025. Seackgram: a targeted method of
optimal demodulation-band selection for compound faults diagnosis of rolling bearing.
Struct. Health Monit. 24 (1), 223-242.

Xin, G., Zhong, Q., Jin, Y., Li, Z., Chen, Y., Li, Y.-F., Antoni, J., 2024. Autonomous bear-
ing fault diagnosis based on fault-induced envelope spectrum and moving peaks-over-
threshold approach. IEEE Trans. Instrum. Meas 73, 1-12.

Yao, Y., Han, T., Yu, J., Xie, M., 2024. Uncertainty-aware deep learning for reliable health
monitoring in safety-critical energy systems. Energy 291, 130419.

Zemali, Z., Cherroun, L., Hadroug, N., Hafaifa, A., Iratni, A., Alshammari, O.S., Co-
lak, I, 2023. Robust intelligent fault diagnosis strategy using kalman observers
and neuro-fuzzy systems for a wind turbine benchmark. Renew. Energy 205,
873-898.

Zhang, K., Liu, Y., Zhang, L., Ma, C., Xu, Y., 2025. Frequency slice graph spectrum model
and its application in bearing fault feature extraction. Mech. Syst. Signal Process. 226,
112383.

Zhao, D., Wang, H., Cui, L., 2024. Frequency-chirprate synchrosqueezing-based scaling
chirplet transform for wind turbine nonstationary fault feature time—frequency repre-
sentation. Mech. Syst. Signal Process. 209, 111112.


http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0007
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0007
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0007
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0008
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0008
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0008
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0009
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0009
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0009
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0010
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0010
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0010
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0011
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0011
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0011
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0011
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0012
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0012
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0012
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0013
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0013
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0013
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0014
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0014
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0014
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0015
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0015
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0015
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0016
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0016
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0016
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0017
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0017
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0017
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0018
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0018
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0018
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0019
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0019
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0019
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0019
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0020
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0020
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0020
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0021
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0021
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0021
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0022
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0022
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0022
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0022
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0023
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0023
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0023
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0024
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0024
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0024
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0025
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0025
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0025
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0026
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0026
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0026
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0027
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0027
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0028
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0028
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0028
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0028
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0029
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0029
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0029
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0030
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0030
http://refhub.elsevier.com/S0029-8018(25)00512-8/sbref0030

	Adaptive signal regime for identifying transient shifts: A novel approach toward fault diagnosis in wind turbine systems
	1 Introduction
	2 Related theory
	3 The proposed methodology of dynamic Markov transition frequency with adaptive peak rates (DMTF-APR)
	3.1 Wavelet-based signal decomposition and Markov state initialization
	3.2 Dynamic Markov transition frequency with adaptive peak rates

	4 Experimental validation analysis
	4.1 Case study I
	4.1.1 Test rig and data acquisition
	4.1.2 Comparative analysis and results validation

	4.2 Case study II
	4.2.1 Experimental configuration and data acquisition
	4.2.2 Comparative analysis and result validation

	5 Conclusion



