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 a b s t r a c t

In real-world applications, the diagnostic efficiency of wind turbine systems, particularly rolling bearings, is 
significantly impaired by variable operating conditions such as fluctuating rotational speeds and varying loads, 
along with environmental disturbances including transient and non-Gaussian noises. These disturbances mask 
damage indicators, creating substantial challenges in accurate fault detection. Traditional diagnostic methods 
are often inadequate due to their sensitivity to noise and inability to identify failure signatures within multi-
variate random transient noise environments. To address these challenges in wind turbine fault diagnosis, this 
research introduces an adaptive signal processing regime with three key innovations: an adaptive signal tracking 
mechanism featuring real-time transient shift identification, a Dynamic Markov Transition Frequency with Adap-
tive Peak Rates (DMTF-APR) model for enhanced abnormality detection, and a Multi-Period Weighted Average 
Framework (MPWAF) that mitigates transient interference noise through the identification and replacement of 
anomalous signal fragments using periodic characteristics and weighted averages. Experimental validation with 
real-world wind turbine farm data demonstrates the framework’s superior fault diagnosis performance, particu-
larly in scenarios with complex non-Gaussian or transient noise interference, achieving significant improvements 
in detection accuracy and reliability compared to conventional methods.

1.  Introduction

Wind turbines (WTs) are sophisticated electromechanical systems 
whose reliable operation depends critically on the health of their trans-
mission chain components, particularly bearings (Du et al., 2024; Zhang 
et al., 2025; Huang et al., 2021). Despite their crucial role, these bear-
ings operate under challenging conditions that include not only environ-
mental stressors but also variable operational states such as fluctuating 
speeds and loads, making fault diagnosis particularly complex. The pres-
ence of transient and non-Gaussian noise further complicates the detec-
tion of incipient faults, as these disturbances can effectively mask early 
damage indicators. While conventional fault diagnosis methods have 
been widely implemented, their effectiveness is often compromised in 
real-world applications due to their sensitivity to noise and inability to 
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identify failure signatures within multivariate random transient noise 
environments (Xin et al., 2024). This challenge has created an urgent 
need for more robust and adaptive diagnostic approaches that can main-
tain accuracy under variable operating conditions.

The fault detection and diagnostics (FDD) for wind turbine systems 
has evolved through several complementary methodologies, including 
signal processing-based methods (Chen et al., 2024b; Jin et al., 2023), 
Machine Learning (ML) methods (Chen et al., 2020; Yao et al., 2024), 
and model-based approaches (Zemali et al., 2023). Among these, vibra-
tion signal analysis has emerged as a particularly effective approach, of-
fering systematic identification of deterioration indicators through var-
ious analytical domains4including time domain (Chen et al., 2019; 
Panagiotopoulos et al., 2023), frequency domain (Zhao et al., 2024), 
time-frequency domain (Liu et al., 2023), and statistical analysis
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Fig. 1. The framework of the proposed Dynamic Markov Transition Frequency with Adaptive Peak Rates (DMTF-APR).

(Chen et al., 2024b; Kaewniam et al., 2022; Chen et al., 2025). This 
methodology proves especially valuable when extensive datasets are 
unavailable, as it relies primarily on physical understanding and estab-
lished engineering principles. Contemporary deep learning approaches, 
including CNNs (Chen et al., 2021), ResNets (Chen et al., 2023b), and 
Transformers (Maldonado-Correa et al., 2024; Chen et al., 2024a), com-
plement these traditional methods by uncovering complex nonlinear re-
lationships in vibration signals, although they typically require substan-
tial datasets and computational resources.

In the complex operational environment of wind farms, vibration-
based diagnosis faces significant challenges due to multiple interference 
sources. Various localized defects, such as pitting and surface cracks, 

produce distinctive vibration signatures that manifest as characteristic 
fault frequencies. However, these signatures are often masked by non-
Gaussian noise, transient disturbances, and impulsive variations from 
various sources, including non-targeted mechanical elements, auxiliary 
systems, and environmental factors. The time-varying nature of these 
interferences, coupled with their non-stationary characteristics, makes 
it particularly challenging to isolate specific fault frequencies associated 
with bearing components.

Recent research has attempted to address these challenges through 
various innovative approaches. Traditional methods using Spectral Kur-
tosis (SK) (Antoni, 2006) have been enhanced through developments 
such as CY CBD� (Peng et al., 2023), which improves robustness against 
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Fig. 2. Schematic representation of the wind turbine system structure.

Fig. 3. Installation locations of vibration accelerometers on the wind turbine generator, mounted horizontally and vertically (Chen et al., 2021).

Fig. 4. Defects on the worn inner surface of rolling bearings, highlighted by red dotted areas indicating inner race failures. (a) Inner race electrical corrosion failure 
of the bearing; (b) Worn inner surface of the bearing inner race; (c) Roller of the wind turbine bearing.

non-Gaussian noise, and the ARKurtogram method (Peng et al., 2024), 
which enables automated and noise-resistant bearing fault detection. 
Other notable advances include the Cyclogram (Li et al., 2023) for im-
proved frequency band selection, the STAKgram method (Jia et al., 
2024), the Ensefgram (Wang et al., 2024), the SEACKgram (Wang et al., 
2025), and the IESFSIOgram (Sun et al., 2025) for handling complex 
interference. However, these approaches still demonstrate considerable 
sensitivity to operational parameters and often rely on complex post-
processing strategies.

To address the inherent complexities and limitations of previous 
fault diagnosis techniques, which have demonstrated considerable sen-

sitivity to operational parameters and frequently relied upon complex 
post-processing signal strategies to manage interference, this research 
presents a novel methodological framework. Traditional approaches 
have proven insufficiently robust, particularly in scenarios characterized 
by multivariate random pulse noise, thus necessitating the development 
of an innovative strategy that can effectively address these challenges. 
The proposed methodology in this paper proposes a sophisticated ap-
proach designed to systematically suppress transient interference noise 
directly associated with non-stationary vibration signals. Specifically, 
this method exploits the fundamental properties of non-stationary sig-
nals observed in mechanical vibrations when subjected to transient noise 
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Fig. 5. Comparative analysis of signal processing stages in case I: (a) Raw signal, (b) Level 1approximation coefficient, (c) Detail coefficient (level 1), (d) Detail 
coefficient (level 2), (e) Detail coefficient (level 3), (f) Low-pass filtered approximation coefficients, (g) Threshold-processed detail coefficients and (h) Comparative 
visualization of original and reconstructed signals.

interference. Through this strategic approach, the method endeavors to 
enhance the robustness of the demodulation process against transient 
noise, thereby facilitating a more precise and reliable selection of de-
modulation bands.

To accomplish these objectives, the methodology encompasses sev-
eral key components. Initially, it introduces an adaptive signal regime 
specifically designed for identifying and tracking transient shifts in the 
signal through a novel adaptive signal tracking mechanism, which in-
corporates real-time transient shift identification and dynamic thresh-
old adjustment. This regime systematically addresses the challenges of 
non-stationary vibration signals by exploiting their fundamental prop-
erties when subjected to transient noise interference. The mechanism’s 
adaptive nature ensures robust detection of signal variations even un-
der complex operating conditions, enhancing the overall demodulation 
process. Subsequently, it establishes a comprehensive signal transition 
model termed Dynamic Markov Transition Frequency with Adaptive 
Peak Rates (DMTF-APR). This model integrates state transition matri-
ces with adaptive peak rate analysis, providing precise tracking and 
identification of abnormal signal components. The model’s transition 
matrix serves as an advanced temporal monitor, continuously evaluat-
ing signal state evolution and facilitating accurate abnormality detec-
tion. Finally, it proposes a Multi-Period Weighted Average Framework 
(MPWAF) for anomalous signal fragment mitigation that identifies and 
replaces anomalous signal fragments using periodic characteristics and 
weighted averages. This framework effectively mitigates transient inter-
ference noise, enabling more precise and reliable selection of demodu-
lation bands. The framework’s effectiveness has been validated through 
extensive experimental studies using real-world wind turbine farm data, 
demonstrating superior performance in fault diagnosis, particularly in 

challenging scenarios involving non-Gaussian or transient noise inter-
ference.

The principal contributions of this research can be summarized as 
follows:

1. A novel adaptive signal tracking mechanism is proposed, which 
incorporates real-time transient shift identification and dynamic 
threshold adjustment, enabling robust detection of signal variations 
in complex operating conditions.

2. An innovative Dynamic Markov Transition Frequency with Adaptive 
Peak Rates (DMTF-APR) model is developed, which integrates so-
phisticated state transition matrices and adaptive peak rate analysis, 
facilitating precise abnormality detection and temporal monitoring 
of signal characteristics.

3. A Multi-Period Weighted Average Framework (MPWAF) identifies 
and replaces anomalous signal fragments using periodic characteris-
tics and weighted averages, effectively mitigating transient interfer-
ence noise to enable more precise and reliable selection of demodu-
lation bands.

4. The effectiveness of the proposed method is validated through com-
prehensive experimental studies using real-world wind turbine farm 
data, demonstrating superior performance in fault diagnosis com-
pared to existing approaches, particularly in scenarios with non-
Gaussian or transient noise interference.
The comprehensive research framework is systematically structured 

and organized as follows: Initially, Section 2 presents a thorough re-
view and critical analysis of the primary metrics employed in the iden-
tification of signal status transformation, while establishing the the-
oretical foundation for the subsequent methodological development. 
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Fig. 6. Multi-scale signal state distribution and order differential analysis in case I: (a) Equidistant signal discretization, (b) Order Differential Analysis (bin=10), (c) 
Order Differential Analysis (bin=12), (d) Order Differential Analysis (bin=14), (e) Order Differential Analysis (bin=16), (f) Order Differential Analysis (bin=18), 
(g) Order Differential Analysis (bin=20).

Fig. 7. Markov signal transition analysis in case I: (a) Markov signal frequencies heat-map, (b) Scaled Markov signal probability heat-map.
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Fig. 8. Quantitative analysis of signal anomaly in case I: Determination of the signal anomaly index.

Fig. 9. Comparative analysis of indicators in case I: (a) Raw Signal, (b) STE, (c) STZCR, (d) STK, and (e) DMTF-APR.

Fig. 10. Comparative analysis in Case I: (a) Weak interference signal characteristics, (b) Post-Interference substitution signal profile.

Following this foundational overview, Section 3 introduces and elab-
orates on the proposed Dynamic Markov Transition Frequency with 
Adaptive Peak Rates (DMTF-APR) model, delineating its mathemati-
cal formulation and operational principles. To demonstrate the prac-
tical efficacy and robustness of the proposed methodology, two dis-
tinct case studies are presented in Section 4. The first case study 
employs validation datasets acquired from a real-world wind tur-
bine farm to evaluate the methodology’s effectiveness under authen-
tic operational conditions. Subsequently, the second case study uti-

lizes laboratory-generated datasets to further validate the method-
ology’s performance under general operating conditions, particularly 
focusing on scenarios where transient noise interference introduces
additional complexity to the measurement data. The research inves-
tigation concludes in Section 5, where the key findings are synthe-
sized and critically analyzed, accompanied by comprehensive insights 
into the broader implications of the proposed method for fault diag-
nosis applications, as well as potential directions for future research
endeavors.
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Fig. 11. Raw signal affected by external transient noise interference in Case I: (a) Demodulation band determination via Fast-Kurtogram, (b) Squared envelope 
spectrum, (c) Logarithmic scale envelope spectral analysis.

Fig. 12. Raw signal affected by external transient noise interference in Case I: (a) Demodulation band determination via Beta-Kurtogram, (b) Squared envelope 
spectrum, (c) Logarithmic scale envelope spectral analysis.

2.  Related theory

In this section, the primary metric employed for the detection of sig-
nal transformations is revisited, and it should be further analyzed. Es-
tablished methodologies, such as Short-Time Energy (STE) (Schirmer 
and Mporas, 2020), Short-Time Kurtosis (STK) (Alimi and Awodele, 
2022), and Short-Time Zero Crossing Rate (STZCR) (Schirmer and Mpo-
ras, 2020; Chen et al., 2023a), have proven to be critical in the identifi-
cation of anomalous signal patterns. These methodologies offer insights 
into various aspects, including peak ratios, energy deployment, and the 
frequency of zero crossings, thereby contributing to the field.

When analyzing real-world discrete signals, these signals are often 
represented as a time series, symbolically denoted as [xn], where n spans 
from the initial point of 1 to the termination point N . The signal can be 
calculated using the following equation:
xf [m] = x[m + f ç ℎ] çw[m] (1)

where m represents the time index, f denotes the frame index, and 
ℎ specifies the duration of the sliding window. The application of a 
window function, typically a rectangular one labeled w, ensures even 
weighting across all frame samples, leading to more accurate signal cal-
culations.

Subsequently, the procedure incorporates the identification of local 
maxima within each segment of the signal encapsulated by the sliding 
window. A peak is recognized when a data point’s amplitude exceeds 
those of its immediate neighbors. This principle is succinctly represented 
in the following formula: 

x[m] − x[m − 1] > 0,

x[m + 1] − x[m] d 0
(2)

The identification of local peaks indicative of signal alterations ne-
cessitates an assessment that accounts for the magnitude of eachpeak. 
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Fig. 13. Raw signal affected by external transient noise interference in Case I: (a) Demodulation band determination via Autogram, (b) Squared envelope spectrum, 
(c) Logarithmic scale envelope spectral analysis.

Fig. 14. Raw signal affected by external transient noise interference in Case I: (a) Demodulation band determination via Infogram, (b) Squared envelope spectrum, 
(c) Logarithmic scale envelope spectral analysis..

Relying solely on amplitude, as is common in some prevalent techniques 
(Schirmer and Mporas, 2020; Alimi and Awodele, 2022), risks obscuring 
the signal’s intrinsic variations due to noise interference. By introducing 
a defined threshold, md , the process of detecting local maxima amidst 
variable and intermittent noise interference is refined. This refinement 
facilitates consistent observation of signal transitions and enhances pre-
cision in identifying discrepancies.

x[m] − x[m − 1] > md

x[m + 1] − x[m] d md (3)

After the filtering process, local peaks that meet specific criteria, de-
noted as Np, are pinpointed within a designated sliding window. Follow-
ing this, the ratio of Np to the total number of samples in the windowis 

accurately calculated, which defines the Short-Term Local Peak Rate 
(STLPR):

STLPR =
Np

M
(4)

where M represents the length of the window function.
The evaluation of local maxima through the sliding window frame-

work is facilitated by Eq. (4), which accurately measures the aggregation 
of outlier points within the signal’s active window.

3.  The proposed methodology of dynamic Markov transition 
frequency with adaptive peak rates (DMTF-APR)

As previously discussed, the accuracy of anomaly detection is sig-
nificantly influenced by the careful selection of a conditional local peak 
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Fig. 15. Case I: (a) Fast-Kurtogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, 
(c) Logarithmic scale envelope spectral analysis.

Fig. 16. Case I: (a) Beta-Kurtogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, 
(c)Logarithmic scale envelope spectral analysis.

threshold, denoted as md . Traditional methods frequently exhibit vulner-
ability to non-Gaussian noise, and they encounter substantial challenges 
in adapting to the variability inherent in signal properties. In response 
to these issues, Dynamic Markov Transition Frequency with Adaptive 
Peak Rates (DMTF-APR) method has been proposed. This approach in-
volves a systematic sequence of steps designed to automatically adjust 
the threshold, thereby eliminating the need for complex manual settings 
and substantially enhancing the system’s adaptability to intricate signal 
environments. The methodology encompasses several principal compo-
nents: initial signal processing, Markov modeling to monitor temporal 
state changes, dynamic peak-rate analysis of discrete transfer frequen-
cies, adaptive adjustment of the anomaly percentage, and the deter-
mination of robust exception boundaries for multiple bins. The frame-
work of this proposed method is depicted in the flowchart below, see in
Fig. 1. 

3.1.  Wavelet-based signal decomposition and Markov state initialization

Initially, the Discrete Wavelet Transform (DWT) is utilized due to 
its attributes of smoothness and superior frequency and time resolution, 
providing an effective means for the initial analysis of signals and the 
identification of transients and anomalies. By decomposing a vibration 
signal x(t), the DWT produces two primary coefficients: the approxi-
mation coefficient cAj,k, which captures general trends, and the detail 
coefficient cDj,k, which highlights minute variations. 

x(t) =

+@1
k=−@

cAj,k�j,k(t) +

+@1
k=−@

cDj,k j,k(t) (5)

where j represents the scale factor of the wavelet, while kdetermines its 
shift factor, thereby establishing the central position. The function �j,k
and  j,k correspond to the wavelet and scale functions, respectively.
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Fig. 17. Case I: (a) Autogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, (c) 
Logarithmic scale envelope spectral analysis.

Fig. 18. Case I: (a) Infogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, (c) 
Logarithmic scale envelope spectral analysis.

During the discrete wavelet transform decomposition, higher-level 
approximation and finer detail coefficients are progressively acquired 
at each stage. This enables the preservation and retrieval of signal char-
acteristics across different frequency ranges and levels until the target 
decomposition level is reached. This process can be mathematically rep-
resented by the following expressions: 

cAj,k =
1
n

ℎ[n − 2k]xj−1,n

cDj,k =
1
n

g[n − 2k]xj−1,n

(6)

where ℎ[n] and g[n] serve as the low-pass and high-pass filters, respec-
tively. The variable xj−1,n represents the low-frequency component of 
the current approximation coefficient, reflecting the global and long-
term trends of the entire signal.

Subsequently, the approximation and detail coefficients undergo fur-
ther processing through thresholding and filtering operations. The pro-
cessed approximation coefficients, denoted as cA2, are derived from the 
application of a Butterworth filter. This procedure is mathematically ar-
ticulated as follows: 

cA2
n
=

M1
i=0

bi ç cAn−i −

N1
j=1

aj ç cA
2
n−j

(7)

The Butterworth filter has feed-forward coefficients bi and feed-
back coefficients ai. In this case, the index j begins at 1 and a0 is set 
to 1 for normalization. Then, soft-thresholding is applied to the de-
tail coefficients cD2’ at each decomposition level to effectively reduce
noise: 

cD2
i
=

{
sgn

(
cDi

)(
E cDi E −"

)
E cDi Ee "

0 E cDi E< "
(8)
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Fig. 19. Schematic representation of the experimental apparatus for gear transmission system analysis with detailed component identification.

Fig. 20. Structural configuration of the gear system: (a) Detailed gear meshing mechanism, (b) Internal architecture of parallel gearbox system with fault location 
indication.

The threshold value " is a specified proportion of the maximum value 
of cDi, articulated as follows: 

" = e çmax
(
cDi

)
(9)

After the coefficients are processed, they are recombined via the 
Inverse Discrete Wavelet Transform (IDWT) to form a new signal se-
quence. This reconstructed sequence is crucial for retrieving important 
signal information and eliminating noise and other disturbances. The 
reconstruction is represented mathematically as: 

x̂(t) =

@1
j=−@

(
cA2

j,k
�j,k(t) +

@1
k=−@

cD2
j,k
 j,k(t)

)
(10)

The reconstruction process is essential, as it aids in identifying peaks 
that deviate from the mean of the original signal, as specified by the 
following condition: 

Π = {i|xi(t) > � J xi(t) < −�, i * {1,& , |n|}} (11)

where � represents the mean of the original signal. Consequently, the 
peak retrieval in the reconstructed signal is expressed as: 

x̂2
i
(t) =

{
xi(t), if i * Π

x̂i(t), if i + Π
(12)

Lastly, a Markov model is employed to statistically capture and de-
scribe transition patterns among states in the reconstructed signal, re-
flecting the principle that a system’s future state is solely dependent 
on its current state, irrespective of prior states. This is captured by the 
following first-order Markov model formula: 
P
(
xi E xi−1, xi−2,& , x1

)
= P

(
xi E xi−1

)
(13)

The above expression indicates that the probability of transitioning 
to the subsequent state, xi, is entirely contingent upon the current state, 
xi−1.

In Markov chains, each step can involve either a transition from one 
state to another state or the retention of the current state. This transi-
tion process is determined by a predefined probability distribution. The 
determination of the current state relies solely upon the most recent pre-
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Fig. 21. Case II: (a) Raw signal, (b) Level 1 approximation coefficient, (c) Detail coefficient (level 1), (d) Detail coefficient (level 2), (e) Detail coefficient (level 3), 
(f) Low-pass filtered approximation coefficients, (g) Thresholded detail coefficients and (g) Raw and reconstructed Signals.

ceding state, embodying the renowned Markov property, which posits 
that the future state depends only on the present state and is indepen-
dent of the sequence of events that preceded it. This specific dependency 
is quantified through a transition probability matrix. This matrix enu-
merates the conditional probabilities of transitioning between all con-
ceivable pairs of states. For a system comprising n states, this matrix 
provides an exhaustive overview of n2 potential transition scenarios. 
The matrix is formulated using a defined approach as follows: 

MTPM =

⎡⎢⎢⎢⎢⎢⎣

p11 p12 ñ p1j ñ

p21 p22 ñ p1j ñ

ð ð ð

pi1 pi2 ñ pij ñ

ð ð ð ð

⎤⎥⎥⎥⎥⎥⎦

(14)

3.2.  Dynamic Markov transition frequency with adaptive peak rates

Prior to establishing a Markov model, signal discretization is refined 
through equal-interval segmentation. This approach allocates the ampli-
tudes of the cleaned signals, which are reconstructed via wavelet trans-
formation, to fixed intervals, denoted by j. Each partition corresponds 
to a discrete level of signal amplitude, which is then mapped onto a 
discrete set of state spaces Si, effectively serving as the nodes within 
the Markov model. Through this method, complex signals are translated 
into a streamlined discrete format. This transformation, delineated by
Eq. (10), allows the Markov model to track interval sequences rather 
than precise amplitude values, as indicated by Eq. (15). Consequently, 
this enhances the ability to differentiate between typical and atypical 
states, as transitions between these discrete states reflect the intrinsic 
laws of the signal. This, in turn, facilitates the construction of Markov 
models that effectively capture the time series and the inherent random-
ness of signals. 

Si =

{
j, xn[i] * Sj
j, xn[i] = max

(
xn
)
, j = nbin − 1

(15)

The initial signal is then segmented into states denoted as Si. In this 
specific scenario, the signal is divided into 10 distinct intervals, repre-
sented as nbin = 10. 
Sj =

[
min

(
xn
)
+ (j − 1) ç �L,min

(
xn
)
+ j ç �L

]

�L =
max

(
xn
)
− min

(
xn
)

nbin 
(16)

where �L signifies the consistent division used for discretizing signals, 
and nbin defines the level of detail and clarity in the portrayal of discrete 
states within the analysis of Markov models.

Subsequently, the occurrence counts of signal transitions in each bin 
are tallied. Building upon this, the first derivative is calculated to ob-
serve the trend of signal transition counts as a function of bin variation. 
Under typical circumstances, given the amplitude distribution of dis-
crete signals, most regular signals cluster around the central bin values, 
resulting in a bell-shaped trend that rises and declines gradually. When 
the first derivative reaches a minimum value, it marks the point where 
the signal transition count peaks before declining, signifying a reduc-
tion in the proportion of normalcy. Further analysis through the second 
derivative helps identify areas where the first derivative’s rate of change 
of begins to slow, indicating a deceleration in the decline of signal tran-
sition counts. The bin corresponding to the second local maximum of 
the second order derivative marks the onset of this slowing trend. Bins 
following this point are characterized as exceptionally high-value inter-
vals and flagged as anomalous, exemplifying significant deviations from 
the norm in signal transition patterns. This distribution-based method 
provides a statistical mechanism to identify and pinpoint unusual be-
haviors within the signal. Additionally, the ratio of these abnormal bins’ 
frequency to the total frequency serves as the baseline for quantifying 
the percentage of signal anomaly. This process is shown in the formula 
below:

index =

1n−1
i

I(�NSi
< 0) ç �2Nmax

Si1n−1
0

N
ç ! (17)
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Fig. 22. Case II: Order differential analysis with (a) Equidistant signal discretization, and analysis results using different bin numbers: (b) bin=10, (c) bin=12, (d) 
bin=14, (e) bin=16, (f) bin=18, (g) bin=20.

Fig. 23. Case II: (a) Markov signal frequencies heat-map, (b) Scaled Markov signal probability heat-map.
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Fig. 24. Case II: Determination of the signal anomaly index.

Fig. 25. Case II: (a) Raw Signal, (b) STE, (c) STZCR, (d) STK, and (e) DMTF-APR.

Fig. 26. Case II: (a) Signals with random interference, (b) Vibration signal with Interference substitution.

where I denotes the indicator function, � represents the first derivative, 
while �2 stands for the second derivative, and ! is an adjustment weight 
factor, provided in subsequent calculations.

Next, the signal amplitude is reordered in descending order. During 
this process, the previously defined percentage baseline index is used 
as a dividing line, further dividing the signal into two segments. Among 
them, the high-value region on the left side of the dividing line is defined 
as an abnormal amplitude, while the part on the right is recognized as 
normal amplitude. When determining a signal’s peak rate, a key aspect 
is to set an appropriate amplitude threshold, and choosing the amplitude 

height difference as the threshold is a reasonable approach. Therefore, 
the average of the signal areas on the left and right of the baseline is 
calculated and subtracted to establish a threshold, as illustrated in the 
following formula: 

M̂d =
(
X̄L
index

− X̄R
index

)
(18)

where XL
index

 and XR
index

 represent the mean of the amplitudes on the 
left and right sides of the baseline in descending order, respectively.

In observing the process of determining the baseline, it becomes ev-
ident that manual fine-tuning to derive threshold values often results in 
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Fig. 27. Raw signal affected by external transient noise interference in Case II: (a) Demodulation band determination via Fast-Kurtogram, (b) Squared envelope 
spectrum, (c) Envelope spectrum in logarithmic scale.

deviations. This deviation is marked by a lower threshold as the baseline 
shifts to the right (i.e., as the index increases), leading to the identifica-
tion of more peaks and a higher chance of false positives. To address this 
issue, an adjustment weighting factor is introduced to shift the baseline 
to the left (i.e., decrease the index).

Once the state sequence is obtained, a matrix is constructed using the 
Markov Transition Matrix (MTM) to determine the frequency of transi-
tions from one state to another. This matrix plots these transition fre-
quencies, with each element denoted as AMTM

ij
. 

AMTM
ij

=

n−11
0

�
(
Sn = i, Sn+1 = j

)
(19)

where �(x, y) represents the Kronecker Delta, which yields a value of 1 
if x equals y and 0 in all other cases. N indicates the total number of 
states in the sequence S.

Subsequently, much like distinguishing between normal and abnor-
mal baselines, it is imperative to identify and eliminate the frequencies 
of regular transitions within the Markov transition frequency matrix. 
This reconfiguration retains only the frequencies of distinctive transi-
tions, effectively isolating atypical transfers from commonplace ones. 
The resulting matrix exclusively maps these specialized transitions, ef-
fectively filtering the data for enhanced specificity. This process is illus-
trated in the formula below: 

� = � ç

n−11
i=0

n−11
j=0

AMTM
ij

(20)

AMTM 2

ij
=

{
0 if i = j or AMTM

ij
> �

AMTM
ij

if i � j and AMTM
ij

d �
(21)

where � signifies the proportion of standard transition occurrences rel-
ative to the aggregate frequency, determined to be 0.1. � refers to the 
determined normal transfer frequency.

The state matrix, denoted as MTPM  is normalized through the exclu-
sion of standard elements. This process culminates in the emergence of 
a novel Markov transition matrix elements denoted by Pij , which am-
plifies the prevalence of atypical transitions within the matrix. It intri-
cately outlines the probability of shifting from any state i to a different

state j. 

Pij =
AMTM 2

ij

1n−1
j=0

AMTM 2

ij
−
(
1 + A�

ij

) (22)

where the variable A�
ij
 refers to the count of regular transitioning ele-

ments in the specified row which exceed a threshold value, represented 
by �.

Next, The transformation process involves unfolding the transition 
probability matrix MTPM  into a one-dimensional vector, represented 
as Fsorted. Following this, every non-zero element within this vector is 
painstakingly singled out. These elements are then organized in a de-
scending arrangement. 

Fsorted = sortdesc
([
Pij E Pij > 0, "(i, j) * ¬(MTPM )

])
(23)

where ¬(MTPM ) represents the indexes for all non-zero elements.
Building upon this, the mean of the sorted probabilities is deter-

mined, symbolizing the central tendency of anomalous transitions and 
reflecting the overall status of anomaly probabilities. This approach, 
when used in conjunction with the amplitude of anomalous signals 
placed on the left side of the sorted baseline, utilizes the mean of this 
probability matrix as the adjustment factor !, enabling the formulation 
of a more robust Peak Rate (PR), as illustrated in the following formula:

PR =
1

M

M−21
n=0

I
(
(�xn > M̂d ) I (�xn+1 > M̂d )

)
(24)

where I denotes the indicator function and �xn represents the value of 
xn − xn−1. This function assigns a value of 1 when the argument enclosed 
within it is positive and assigns a value of 0 otherwise.

Following a comprehensive analysis of the Dynamic Markov Tran-
sition Frequency with Adaptive Peak Rates (DMTF-APR) across the en-
tirety of the signal spectrum, the calculated average values are systemat-
ically employed not only to establish a robust threshold for detecting ab-
normal boundaries but also to define an adaptive fault-tolerant window 
that enables the identification of previously overlooked anomalies. Sub-
sequently, precise modifications are meticulously applied to specific seg-
ments of the original signal that correspond to these identified frames, 
particularly where amplitude spikes require regulation. This procedure 
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can be expressed through the following formula. 

B =

{
g E PR[g] > 
 ç

(
1

G

G−11
g=0

PR[g]

)}
(25)

where B defining anomaly boundaries, 
 as the average coefficient.
After identifying potential anomalous locations, a sieving mecha-

nism is introduced to analyze anomalies across different bins. By ag-
gregating results from multiple bins, calculating the frequency of occur-
rence for each location, and applying frequency distribution, the most 
likely anomaly positions are selected. This process ensures high robust-
ness and accuracy by integrating information from multiple bins.

Due to the stiffness of the absence of anomalous fragments, the am-
plitude and frequency characteristics of the time series need to be con-
sidered. The highest amplitude of each frequency is calculated and the 
mean value is extracted, the first k frequencies with the highest ampli-
tude are selected from these amplitudes, and finally, the corresponding 
period is calculated for each selected frequency, so as to capture the 
periodic characteristics of the signal more accurately, so as to make an 
effective time series replacement while preserving the basic character-
istics of the signal. The process can be computed as follows. 

pi =

+
T

fi

,
where {f1,& , fk} = arg

f∗*{1,&,

+
T

2

,
}

Topk(Avg(|FFT(x̂t)|))
(26)

where Topk(Avg(|FFT(x̂t)|)) represents the k highest values selected from 
the averaged frequency amplitudes obtained through Fast Fourier Trans-
form analysis.

Furthermore, the weight coefficient wi for each epoch pi must be de-
termined. This weight is mathematically defined as the ratio of the ith 
frequency’s amplitude to the cumulative sum of all selected frequency 
amplitudes. This normalization ensures that the sum of weights equals 
unity, thereby establishing a more robust foundation for subsequent 
weighted average calculations: 

wi =
Amp(fi)1k

j=1
Amp(fj )

, i * {1, 2,& , k} (27)

where Amp(ç) denotes the amplitude calculation operator.
For the purpose of anomalous fragment replacement, it is essential to 

compute the weighted average across multiple distinct periods. To facil-
itate this, we define the set Ci(t) as the collection of non-missing value 
indices corresponding to time point t within each epoch pi, expressed 
as:

Ci(t) =

{
(t − j) mod N E j = 0, 1, 2,& ,

+
T

pi

,}

such that [(t − j) mod N]missing = 0 (28)

Through comprehensive analysis and iterative computations, the 
final prediction value is derived by systematically aggregating the 
weighted averages across all temporal periods, whereby the Multi-
Period Weighted Average Framework (MPWAF), as formulated in (29). 
This framework not only identifies but also systematically replaces 
anomalous signal fragments by leveraging inherent periodic character-
istics and optimized weighted averages. Consequently, the framework 
effectively mitigates transient interference noise, which in turn enables 
significantly more precise and reliable selection of demodulation bands 
for subsequent signal analysis. 

yn
predict

=

k1
i=1

wi ç
1

|Ci(t)|
1

j*Ci(t)

x̂t[j], n * (g çM,g çM + ℎ),"g * B (29)

This comprehensive methodological framework serves the dual pur-
pose of effectively mitigating anomaly-induced distortions while pre-
serving the signal’s fundamental characteristics. The mathematical rigor 
employed in this approach ensures robust signal reconstruction while 
maintaining the integrity of essential temporal patterns and relation-
ships within the data structure. The process is outlined in the pseudo-
algorithm presented in Algorithm 1.

Algorithm 1 Dynamic Markov Transition Frequency with Adaptive Peak 
Rates (DMTF-APR).
Phase I: Multi-Resolution Wavelet Decomposition and Signal Re-
construction 
Input: Original temporal vibration sequence: x(t)
 1: Implementation of Discrete Wavelet Transform decomposition: 
x(t) =

1+@
k=−@

cAj,k�j,k(t) +
1+@
k=−@

cDj,k j,k(t)D

 2: Extraction of approximation and detail coefficients: cAj,k and cDj,k

 3: Application of adaptive filtering to cAj,k and soft thresholding to 
cDj,k

 4: Signal reconstruction via Inverse DWT: 
x̂(t) =

1@
j=−@

(
cA2

j,k
�j,k(t) +

1@
k=−@

cD2
j,k
 j,k(t)

)

 Output: Processed signal x̂(t)
 Phase II: Dynamic Peak Rate Analysis and Threshold Optimization
 Input: Reconstructed signal x̂(t)
 5: Implementation of uniform signal discretization 
 6: Computation of second-order derivatives and adaptive threshold: 
index =

1n−1
i I(�NSi

<0)ç�2Nmax
Si1n−1

0
N

ç !

 7: Generation of Markov transition frequency matrix: MTM

 8: Normalization of transition probability matrix: TPM
 9: Estimation of optimal peak rate threshold: 
M̂d =

(
X̄L
index

− X̄R
index

)

 Output: Optimized threshold M̂d

 Phase III: Statistical Validation and Signal Enhancement 
 Input: Derived threshold M̂d

 10: Computation of temporal peak rate utilizing threshold: 
PR =

1

M

1M−2
n=0

I
(
(�xn > M̂d ) I (�xn+1 > M̂d )

)

 11: Definition of anomalous signal regions: 
B =

{
g E PR[g] > 
 ç

(
1

G

1G−1
g=0

PR[g]
)}

 12: Implementation of amplitude constraint for anomaly mitigation: 
yn
predict

=
1g

i=1
wi ç

1

|Ci(t)|
1
j*Ci(t)

x̂t[j], n * (g çM,g çM + ℎ),"g * B

 Output: Enhanced signal x̂(t) with controlled interference

4.  Experimental validation analysis

To rigorously evaluate and validate the effectiveness of the proposed 
methodology, two distinct case studies will be conducted. The first case 
study, detailed in Section 4.1, examines a real-world wind farm ap-
plication, whereby the dataset has been systematically collected from 
an operational wind farm located in LU NAN, China. Furthermore, the 
second case study, presented in Section 4.2, involves an experimental 
test-rig of a gear transmission system, which serves to demonstrate the 
method’s efficacy in gear fault diagnosis through controlled laboratory 
conditions. These complementary studies were specifically selected be-
cause they represent both field-based and laboratory-controlled envi-
ronments, thus providing comprehensive validation across different op-
erational contexts.

4.1.  Case study I

4.1.1.  Test rig and data acquisition
The proposed methodology for fault diagnosis in wind turbine sys-

tems, particularly focusing on generator bearing diagnostics, has been 
extensively validated through empirical vibration data collected from an 
operational wind farm situated in LU NAN, China. The primary subject 
of investigation is a doubly-fed induction generator (DFIG) wind turbine 
system, whose detailed configuration is illustrated in Fig. 2. This partic-
ular installation comprises an offshore 1.5-MW three-bladed horizontal 
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axis system, which represents a commonly deployed configuration in 
modern wind energy applications.

To enable comprehensive monitoring, twelve accelerometers were 
strategically positioned along various points of the turbine’s transmis-
sion line. While multiple data channels are available, this study specif-
ically emphasizes measurements obtained from channel 05, which is 
prominently highlighted within a dotted square on the generator dia-
gram in Fig. 2. Moreover, the actual mounting configuration is depicted 
in Fig. 3, where it is evident that channel 05 is optimally positioned at 
the generator’s input shaft, ensuring the shortest proximity to the mon-
itored bearing among all installed accelerometers. Additionally, Fig. 4 
illustrates the defects on the worn inner surface of rolling bearings, with 
red dotted areas marking inner race failures.

Wind turbine operations are inherently influenced by variable input 
rotational speeds, which arise from a combination of factors, including 
stochastic wind patterns, non-stationary load distributions, and dynamic 
transmission torques. Such variability poses a substantial challenge in 
developing reliable fault diagnosis protocols for operational wind tur-
bine systems. Therefore, to establish consistent monitoring procedures 
while maintaining acceptable accuracy, it was necessary to analyze vi-
bration measurements across a wide range of working conditions. How-
ever, particular attention was given to vibrations occurring at a typical 
rotational speed of 1080 r/min, as these conditions represent critical op-
erational parameters.

The actual monitoring protocol was implemented under the follow-
ing specified conditions:

1. In accordance with the established monitoring schedule, data collec-
tion was conducted at semi-monthly intervals. The system employed 
a sampling frequency of 20,000 Hz, whereby 15 distinct data sets 
were collected at random intervals within each 24-h monitoring pe-
riod for comprehensive analysis.

2. Given the inherent variability of meteorological conditions, achiev-
ing consistent rotational speeds of precisely 1080 r/min proved chal-
lenging. Therefore, to maintain the integrity of the health condition 
monitoring system, actual data collection dates occasionally devi-
ated from the predetermined sampling intervals, though this was ac-
counted for in the subsequent analysis.

4.1.2.  Comparative analysis and results validation
The experimental analysis begins with a raw vibration signal, as il-

lustrated in Fig. 5(a), which is inherently subjected to multiple forms 
of interference. These disturbances encompass diverse random exter-
nal transient perturbations characterized by variable amplitudes across 
both high and low frequency spectra, while simultaneously being con-
taminated by environmental noise, predominantly of Gaussian nature. 
To facilitate a comprehensive and methodologically rigorous analysis of 
this complex vibration signal amid such noise conditions, it becomes im-
perative to implement sophisticated pre-processing techniques. In this 
context, the Discrete Wavelet Transform (DWT) emerges as a particu-
larly suitable methodology, having demonstrated robust capabilities in 
signal decomposition while maintaining the integrity of intrinsic signal 
dynamics. Consequently, the level 1 approximation coefficient, which 
effectively encapsulates these preserved dynamic characteristics, is vi-
sualized in Fig. 5(b). Furthermore, the detailed coefficients at successive 
levels 1, 2, and 3, derived through systematic DWT implementation, are 
methodically presented in Fig. 5(c)3(e), respectively.

A comprehensive examination of the high-frequency components 
illustrated at each decomposition level reveals their exceptional ca-
pability to capture rapid signal variations, which frequently serve as
critical early indicators of significant events in the signal’s behavior. 
Conversely, the low-frequency components effectively demonstrate the 
fundamental structure and long-term evolutionary trends of the signal. 
The optimization of these coefficients through strategic application of 
low-pass filtering and threshold processing techniques proves crucial 

for enhancing signal clarity and interpretation. This methodological ap-
proach effectively eliminates minor perturbations, substantially reduces 
noise artifacts, and simplifies the signal’s complexity while maintaining 
its essential characteristics. Consequently, the long-term stability fea-
tures of the signal become more prominently emphasized, and small-
scale interferences are effectively suppressed, as evidenced in Fig. 5(f), 
(g). The reconstructed signal following wavelet transformation exhibits 
notable qualitative and quantitative advantages. Fig. 5(h) presents a 
comparative analysis between the original and reconstructed signals, 
demonstrating the significant impact of the implemented filtering and 
threshold processing techniques. The processed signal not only success-
fully eliminates unwanted noise but also enhances the distinctive fea-
tures of significant external interferences, thereby improving the clarity 
of anomalous signal variations. Through this focused approach to core 
information extraction, the method substantially enhances both the pre-
cision and reliability of anomaly detection processes.

The methodology proceeds with a crucial signal processing step that 
involves partitioning the reconstructed signal into discrete states, as 
formally defined in Eqs. (15) and (16). In this process, the number 
of dynamically partitioned intervals is systematically varied between 
10 and 20 to ensure comprehensive analysis. The resultant discrete 
signals demonstrate distinctly quantifiable distribution intervals under 
both standard operating conditions and noise-influenced scenarios, as 
comprehensively depicted in Fig. 6(a). Subsequently, building upon the 
equidistant discretization results, the derivatives of each transition fre-
quency undergo rigorous statistical analysis to compute higher-order 
derivatives of the signal state distribution. This mathematical approach 
facilitates the identification and characterization of underlying transi-
tion patterns between signal states.

As evidenced in Fig. 6(b)3(g), the amplitude distribution of the dis-
crete signals exhibits a pronounced concentration in the central inter-
val, manifesting as a characteristic Gaussian-like distribution. The first-
order derivative’s minimum value serves as a critical indicator, denoting 
the peak of signal transition frequency and thereby marking the cru-
cial point where the proportion of normal states initiates its decline. 
Furthermore, through second-order derivative analysis, regions of de-
creased rate change in the first-order derivative are identified, thus in-
dicating a significant deceleration in signal transition frequency reduc-
tion. Notably, the second local maximum of the second-order deriva-
tive demarcates the onset of this deceleration trend. Consequently, in-
tervals occurring after this pivotal point are classified as abnormal, since 
their signal transition patterns demonstrate substantial deviation from 
established normal conditions. This comprehensive analysis enables 
the precise calculation of anomaly percentage indices for both normal 
fault source signals and abnormal interference source signals, thereby 
establishing essential parameters for subsequent peak rate threshold
analysis.

Following the equidistant discretization process, two distinct heat-
map visualizations are employed to elucidate the frequency and proba-
bility distributions of the Markov signals. Specifically, Fig. 7(a), presents 
the frequency heat-map of Markov signals, offering valuable insights 
into the regularity and patterns of state transitions within the Markov 
process. The pronounced diagonal elements indicate predominant sta-
bility in state patterns, while the bright off-diagonal elements reveal 
significant state transitions, thereby providing evidence of the system’s 
inherent dynamics and potential anomalies.

A notable observation pertains to the presence of darker regions de-
lineated by white boundaries, both along and distant from the diago-
nal. These white boundaries signify statistically infrequent or anoma-
lous transition behaviors within the signal. The prominence of these 
boundaries serves as a quantitative indicator of the occurrence rate of 
these low-probability transitions. Subsequently, strategic adjustments to 
the heat-maps are implemented, including the systematic exclusion of 
self-transition frequency elements on the diagonal and the removal of 
high-frequency transitions off the diagonal. This refined process, accom-
panied by matrix normalization, results in a modified transition proba-
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Fig. 28. Raw signal affected by external transient noise interference in Case II: (a) Demodulation band determination via Beta-Kurtogram, (b) Squared envelope 
spectrum, (c) Envelope spectrum in logarithmic scale.

Fig. 29. Raw signal affected by external transient noise interference in Case II: (a) Demodulation band determination via Autogram, (b) Squared envelope spectrum, 
(c) Envelope spectrum in logarithmic scale.

bility matrix, as depicted in Fig. 7(b). These methodological adjustments 
effectively enhance the significance of lower-frequency transition ele-
ments, thereby expanding the dynamic range of the matrix and facilitat-
ing more nuanced identification of subtle changes or transition patterns 
that might otherwise remain obscured in the frequency matrix.

Subsequently, the mean of non-zero probabilities in the Markov 
transition probability matrix, calculated according to Eq.  (23), is 
utilized as a crucial adjustment parameter in Eq. (17) to determine 
the anomaly percentage index. This index is systematically marked 
on the signal arranged in reverse order, as illustrated in Fig. 8. 
Through the application of Eq. (18), a significant red baseline emerges, 
effectively partitioning the sorted signal into two distinct regions. 
The adaptive peak rate threshold M̂d is then precisely determined 

through the calculation of the differential means between these two
regions.

To rigorously evaluate the efficacy of the proposed methodology in 
monitoring signal state transitions, comprehensive comparisons were 
conducted against several well-established techniques, including Short-
Time Energy (STE) (Schirmer and Mporas, 2020), Short-Time Zero-
Crossing Rate (STZCR) (Schirmer and Mporas, 2020; Chen et al., 2023a), 
and Short-Time Kurtosis (STK) (Alimi and Awodele, 2022). These com-
parative analyses are systematically presented in Fig. 9(b)3(f). The re-
sults demonstrate clear limitations in existing methods: the STZCR ap-
proach exhibits significant deficiencies in identifying transient noise in-
terferences, as evidenced in Fig. 9(c), while the STE method merely high-
lights two high-energy spikes (Fig. 9(b)), with the overall signal remain-
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Fig. 30. Raw signal affected by external transient noise interference in Case II: (a) Demodulation band determination via Infogram, (b) Squared envelope spectrum, 
(c) Envelope spectrum in logarithmic scale.

Fig. 31. Case II: (a) Fast-Kurtogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, 
(c) Envelope spectrum in logarithmic scale.

ing notably cluttered. Although the STK method demonstrates relatively 
stable performance (Fig. 9(d)), it remains susceptible to significant noise 
from unrecorded signal components. In contrast, the Dynamic Markov 
Transition Frequency with Adaptive Peak Rates (DMTF-APR) method, 
illustrated in Fig. 9(e), exhibits superior performance characteristics, 
consistently and accurately detecting all transient noise interferences 
while maintaining robustness against other unknown signal distortions, 
thereby establishing itself as a more reliable and precise tool for signal 
state transition monitoring.

In accordance with Eqs. (26)3(29), a proposed approach involving 
the calculation of the period-weighted mean of key frequency domain 
components is implemented to replace anomalous signal fragments. This 
methodological enhancement serves the dual purpose of mitigating am-

plitude interference while preserving the intrinsic amplitude-frequency 
characteristics of the original time series, thereby substantially improv-
ing the reliability of fault diagnosis procedures. The efficacy of this dis-
turbance suppression mechanism is comprehensively demonstrated in 
Fig. 10(a) and (b).

For comprehensive validation, the study employs multiple signal 
processing techniques4namely Fast-Kurtogram, Beta-kurogram, Auto-
gram, and Infogram4in a comparative analytical framework. These 
methods are systematically applied to three distinct signal categories: 
original bearing vibration signals, signals exhibiting sensitivity to ran-
dom transient noise interference, and post-interference replacement sig-
nals. The demodulation band selection results for untreated signals are 
meticulously documented in Figs. 11314(a), <Demodulation Band Se-

Ocean Engineering 325 (2025) 120798 

19 



P. Chen et al.

Fig. 32. Case II: (a) Beta-Kurtogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, 
(c) Envelope spectrum in logarithmic scale.

Fig. 33. Case II: (a) Autogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, (c) 
Envelope spectrum in logarithmic scale.

lection Analysis.= Subsequently, detailed envelope analyses utilizing 
both Squared Envelope Spectrum (SES) and Logarithmic Envelope Spec-
trum (LES) methodologies are presented in the corresponding (b) and 
(c) subfigures, yielding filtered central frequencies and bandwidths of 
[2500Hz, 1250Hz], [1500Hz, 8750Hz], [416.6667Hz, 3541.6667Hz], 
and [2500Hz, 3750Hz], respectively. However, a notable observation 
emerges from the envelope analyses: the absence of the theoretically 
calculated bearing characteristic frequency (BPFI = 319.769Hz), indi-
cating a potential limitation in the initial analysis approach.

The impact of implementing different demodulation bands and en-
velope analysis on post-interference suppression signals is extensively 
illustrated in Figs. 15318. The optimized parameters for filtered cen-
tral frequency and bandwidth are established as [5000 Hz, 2500Hz], 
[1250 Hz, 1875Hz], [1250 Hz, 6875Hz], and [5000 Hz, 7500Hz]. Sig-
nificantly, the subsequent envelope analyses reveal distinct identifica-

tion of multiple characteristic frequencies (BPFI , 2BPFI , 3BPFI), 
thereby validating the robustness of the proposed methodological frame-
work in addressing transitional states under conditions of transient non-
Gaussian interference.

4.2.  Case study II

4.2.1.  Experimental configuration and data acquisition
The gearbox dataset, which serves as a comprehensive repository for 

fault diagnosis research, originates from a meticulously designed gear 
drive system that systematically encompasses multiple operating con-
ditions and fault types. As illustrated in Fig. 19, the experimental ap-
paratus comprises an integrated assembly of precision-engineered com-
ponents, including a high-resolution tachometer, a variable-speed drive 
motor with precise control capabilities, a calibrated torque sensor for ac-
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Fig. 34. Case II: (a) Infogram-assisted demodulation band selection for post-interference substitution and amplitude limitation, (b) Squared envelope spectrum, (c) 
Envelope spectrum in logarithmic scale.

curate measurement, a sophisticated two-stage parallel gearbox, a load 
gearbox, and a programmable load motor, all of which work synergisti-
cally to simulate authentic industrial operating conditions. Of particu-
lar significance is the strategic positioning of the accelerometer, which 
has been specifically mounted on an independent disk4a configuration 
that has been empirically determined to optimize vibration detection 
sensitivity and is depicted in enhanced detail in the magnified view of 
Fig. 19.

To ensure the capture of high-frequency transients and subtle system 
dynamics while maintaining signal fidelity, data acquisition is executed 
at a sampling frequency of 12.8 kHz, thus providing exceptional tempo-
ral resolution for comprehensive analysis. Moreover, to investigate the 
system’s behavioral characteristics across diverse operational scenarios, 
the dataset encompasses an extensive spectrum of rotational speeds, 
which are methodically modulated between 1600 and 2400 r/min. Fur-
thermore, the fundamental meshing architecture of the gears is precisely 
delineated in Fig. 20(a), while the comprehensive internal structural 
configuration of the parallel gearbox system is meticulously presented 
in Fig. 20(b), wherein the faulty gear component is distinctively demar-
cated with dotted lines to facilitate precise identification.

To establish a rigorous foundation for fault diagnosis analysis, vi-
bration measurements are systematically acquired along the X-axis of 
the accelerometer while maintaining the gear at a predetermined opera-
tional speed of 1600RPM. Each operational state, including the baseline 
healthy condition, comprises an extensive dataset of 768,000 discrete 
measurements, collected over a carefully controlled duration of 60 s. 
Consequently, this comprehensive and methodically constructed dataset 
serves as an invaluable resource for the development, validation, and re-
finement of fault diagnosis algorithms, thereby enabling researchers to 
conduct thorough investigations of various operational states and fault 
manifestations under rigorously controlled experimental conditions.

4.2.2.  Comparative analysis and result validation
Fig. 21 illustrates the systematic decomposition and reconstruction 

process through DWT, encompassing the original signal characteris-
tics, transformation procedures, and reconstructed outcomes. Upon ex-
amining Fig. 21(a), it becomes evident that the transient interference 
patterns within the gear fault signal manifest substantially more com-
plex and stochastic characteristics compared to the bearing fault sig-
nal analyzed in Case 4.1. This heightened complexity consequently in-

creases the likelihood of misidentification between fault vibration com-
ponents and interference patterns, potentially compromising diagnostic 
accuracy. Therefore, through the implementation of sophisticated pre-
processing algorithms, extraneous background noise was systematically 
attenuated while preserving crucial transient interference and fault com-
ponent characteristics, thereby establishing a robust foundation for sub-
sequent fault identification protocols.

Fig. 22 presents the quantitative analysis of discretization outcomes 
across various equidistant intervals, incorporating both statistical sam-
pling point distributions and dynamic multi-order differential analyses. 
The results demonstrate that the proposed second-largest value method-
ology effectively delineates the signal transition patterns from normal 
to high-interval values across different partition configurations, thereby 
establishing more precise boundaries between nominal and anomalous 
states.

The transition frequency matrix depicted in Fig. 23(a) reveals the 
comprehensive distribution of signal conversion patterns, with partic-
ular emphasis on the spatial concentration of normal self-transition 
behaviors along the diagonal region. This distribution pattern indi-
cates that normal signal transitions predominantly occur within defined 
parametric boundaries, while subtle anomalous transitions, induced by 
stochastic disturbances, manifest in close proximity to the diagonal, es-
tablishing their contextual relationship with normal behavioral patterns. 
Furthermore, through the exclusion of normal transitional elements and 
subsequent normalization, as illustrated in Fig. 23(b), two distinct high-
lighted regions emerge along the diagonal, underscoring the statistical 
rarity of anomalous conversion probabilities within normal transition 
patterns.

The adaptive threshold, derived through the application of Eqs. (17) 
and 18, is visualized in Fig. 24. When applied to the modified peak rate 
and compared against conventional signal transition analysis method-
ologies (Fig. 25), the results conclusively demonstrate the enhanced ca-
pability of the proposed approach in identifying stochastic and uncertain 
interferences within complex operational environments.

Employing methodologies consistent with Case Study I, the Dynamic 
Markov Transition Frequency with Adaptive Peak Rates (DMTF-APR) 
indicator successfully identified and localized transient noise interfer-
ences. To preserve the integrity of amplitude-frequency characteristics, 
the framework incorporates an innovative mechanism replacing anoma-
lous segments with normally weighted averages, thereby mitigating am-
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plitude interference effects and enhancing diagnostic reliability. As evi-
denced in Fig. 26, the seamless integration of replaced signals at original 
anomaly points validates the effectiveness of this approach.

In this case study, the comparative analysis employed benchmark-
ing methods, specifically Fast-Kurtogram, Beta-Kurtogram, Autogram, 
and Infogram. The processed signals underwent a validation process, 
including the selection of demodulation bands and the execution of en-
velope analysis. The results of the demodulation band selection for the 
unprocessed signals can be observed in Figs. 27(a)330(a). Subsequent 
envelope analysis utilized the Square Envelope Spectrum (SES) and Log-
arithmic Envelope Spectrum (LES), as shown in Figs. 27(b), (c), 28(b), 
(c), 29(b), (c), 30(b) and (c). These figures reveal the center frequen-
cies and bandwidths determined by the selected methods, quantified as 
[2133.3333Hz, 1066.6667Hz], [266.6667Hz, 6266.6667Hz], [266Hz, 
8000Hz] and [2133.3333Hz, 1066.6667Hz]. Upon closer inspection, 
the envelope analyses in Figs. 27(b), (c), 28(b), (c), 29(b), (c), 30(b) 
and (c) do not show the bearing characteristic frequency. This absence 
is noteworthy, particularly because it deviates from the theoretical cal-
culation, which yields a characteristic frequency of f = 7.73Hz.

Following the identification and subsequent treatment of interfer-
ential elements through their replacement with weighted averages of 
normal segments, a second phase of analysis was conducted. The re-
sults of this refined analysis are presented in Figs. 31(a)334(a), which 
collectively demonstrate the significant impact of utilizing different 
demodulation bands and implementing envelope analysis on the pro-
cessed signal. Furthermore, Figs. 31(b), (c), 32(b), (c), 33(b), (c), 34(b), 
and (c) provide comprehensive results of the envelope analysis utiliz-
ing both SES and LES methodologies. In this refined analysis, the de-
modulation parameters, specifically the filter center frequencies and 
bandwidths, were precisely defined as [1600Hz, 800Hz], [200Hz, 
500Hz], [200Hz, 3300Hz], and [3200Hz, 4800Hz]. Significantly, re-
gardless of the specific demodulation band selection methodology em-
ployed, the results consistently demonstrated clear distinguish ability 
of multiple characteristic frequencies, including f, 2f, 3f , and their 
higher-order multiples. This robust outcome provides substantial vali-
dation for the effectiveness of the proposed Dynamic Markov Transi-
tion Frequency with Adaptive Peak Rates (DMTF-APR) method, par-
ticularly in complex operational environments and specifically in the 
context of diagnosing rotating equipment subject to random external
interference.

5.  Conclusion

This research presents a comprehensive methodological framework 
that effectively addresses the challenges of fault diagnosis in wind tur-
bine bearing systems through the integration of adaptive signal tracking, 
dynamic Markov transition modeling, and enhanced noise suppression 
techniques. The framework makes several significant contributions: su-
perior capability in capturing non-stationary fault signatures through 
adaptive signal tracking, effective characterization of complex fault pat-
terns via dynamic Markov transition modeling, and successful minimiza-
tion of transient interference noise through enhanced suppression tech-
niques. Experimental results demonstrate significant performance im-
provements over existing approaches, particularly in challenging sce-
narios involving non-stationary signals and transient interference noise. 
Field testing has validated the framework’s practical utility, showed im-
proved early fault detection rates and reduced false alarms, which di-
rectly contribute to more efficient maintenance scheduling and reduced 
operational costs.

Building upon these achievements, several promising research di-
rections have been identified for future work. First, researchers aim to 
integrate deep learning techniques for automated parameter optimiza-
tion and real-time adaptation, while also investigating the framework’s 
applicability to other renewable energy systems and industrial equip-
ment. Moreover, the development of more efficient computational algo-
rithms is essential for enhanced real-time processing capabilities, and 

there are significant opportunities to explore integration with Indus-
try 4.0 technologies such as IoT sensors and cloud-based monitoring
systems.

Although this research has presented significant advancements, 
certain limitations persist that warrant further investigation. Specif-
ically, researchers must address computational complexity to en-
able more efficient real-time processing, because the current sys-
tem requires substantial computing resources. Furthermore, there is 
a need to reduce dependency on manual parameter tuning, and the 
framework’s performance under extreme environmental conditions 
and in scenarios with limited fault data must be improved. Finally, 
broader validation across diverse turbine models and operational con-
ditions is necessary to ensure long-term reliability and generalizabil-
ity. Therefore, future efforts will focus on overcoming these chal-
lenges to further enhance the framework’s robustness and practical
applicability.
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