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Abstract

Planetary gearboxes are critical mechanical components widely deployed in industrial
applications such as wind turbines, helicopters, and hybrid vehicles, where their reliable
operation directly impacts system performance and safety. Traditional fault diagnosis
approaches using graph neural networks and graph contrastive learning (GCL) face significant
challenges, including prohibitive costs in fault sample acquisition, ineffective feature extraction
from limited data, and semantic distortions in node embedding space that compromise
diagnostic accuracy. Furthermore, existing methods struggle with insufficient supervision for
complex fault classification and show vulnerability to distribution shifts in new environments.
To address these limitations, this research proposes the metric-guided GCL (MGCL)
framework, featuring three innovative components: a feature-decoupled pre-training mechanism
with graph data augmentation, a sophisticated cosine-Euclidean hybrid distance metric, and a
two-stage training paradigm combining unsupervised pre-training with weakly supervised
fine-tuning. MGCL significantly advances the field by effectively handling sample scarcity and
annotation limitations while enhancing model robustness against domain shifts in real-world
industrial applications, ultimately providing a more reliable and practical solution for industrial
fault diagnosis.
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1. Introduction

Planetary gearboxes serve as fundamental mechanical com-
ponents in diverse industrial applications, ranging from
wind turbines and helicopters to electric motors and hybrid
vehicles, where they play a critical role in power trans-
mission and torque conversion for ensuring optimal system
performance [1-3]. Nevertheless, these sophisticated mechan-
isms are inherently susceptible to various forms of mechanical
deterioration, including progressive wear, structural crack-
ing, and catastrophic tooth breakage, primarily due to pro-
longed exposure to high-speed operations and continuously
fluctuating load conditions. In this context, the implementation
of proactive prediction strategies and comprehensive health
management protocols has become increasingly essential, as
these approaches not only facilitate safe and reliable oper-
ation but also significantly enhance the overall operational
reliability of industrial systems. Fault detection, as one of its
primary branches, serves as a cornerstone in maintaining sys-
tem integrity [4—6]. Furthermore, with the advent of advanced
data processing capabilities and the systematic exploitation
of vast quantities of operational data, data-driven fault dia-
gnosis methodologies have emerged as particularly promising
solutions [7-9].

In the field of mechanical fault diagnosis, traditional
data-driven methodologies primarily rely on signal pro-
cessing techniques for feature extraction, encompassing a
wide spectrum of analytical approaches such as time-domain
statistical parameters [10, 11], frequency-domain spectral
analysis [12, 13], and time-frequency domain decomposi-
tion techniques [14]. Subsequently, these extracted features
are integrated with conventional machine learning classifiers
[15], notably support vector machines (SVM) [16, 17] and
Random Forest algorithms [18], to facilitate fault identi-
fication and classification [19-21]. Nevertheless, these con-
ventional approaches exhibit two significant inherent limita-
tions that substantially impact their diagnostic effectiveness.
Firstly, their heavy dependence on manual feature engineering
presents a fundamental challenge, particularly when confron-
ted with complex non-stationary signals characteristic of real-
world mechanical systems. This reliance on human-designed
features not only limits the method’s adaptability but also leads
to notable performance deterioration when operating condi-
tions deviate from the baseline scenarios. Furthermore, and
perhaps more critically, these traditional models demonstrate
insufficient capability in processing high-dimensional nonlin-
ear signals that are inherent in modern mechanical systems.
This limitation manifests in two crucial aspects: the models
struggle to effectively capture and leverage the intricate spatio-
temporal correlations and component coupling relationships
present in multi-source data streams, while simultaneously
failing to adequately model the complex dynamics of fault
propagation patterns and multi-scale temporal variations in
system behavior.

Graph neural network (GNN) data-driven fault diagnosis
methods have emerged as a powerful paradigm that effectively

captures system complexity through node-edge representa-
tions, thereby enabling comprehensive modeling of com-
ponent interactions and temporal dynamics within indus-
trial systems [22]. Contemporary graph-based diagnostic
frameworks predominantly focus on constructing high-fidelity
graph models through sophisticated data point similarity
analyzes, which subsequently serves as the cornerstone for
downstream diagnostic processes [23]. Several noteworthy
implementations demonstrate this approach’s versatility. For
instance, Zhou et al [24]. developed a methodology that trans-
forms noise vibration signals into static graphs using spec-
tral characteristics, while implementing distance metric func-
tions to optimize edge redundancy. Furthermore, Han et al
[25]. introduced an adaptive multi-relation fusion framework
for constructing lightweight metapath graphs, which simultan-
eously reduces structural complexity while enhancing over-
all graph quality. Additionally, Qing et al [26]. innovatively
incorporated temporal neighborhood relationships into spatial
connectivity patterns for pre-connection operations and amp-
litude modulation construction, utilizing selective adjacency
matrix training exclusively for connected samples to achieve
optimal weight distributions. Nevertheless, despite their con-
siderable advantages, GNN-based methods face several signi-
ficant limitations. First and foremost, the computational com-
plexity of graph construction increases exponentially with
sample size, as each additional datapoint necessitates evalu-
ation of its relationships with all existing nodes. This scalabil-
ity challenge impacts model training and inference efficiency,
particularly in large-scale industrial systems requiring real-
time diagnostic capabilities. Moreover, the development of
high-quality graphs fundamentally depends on the availabil-
ity of both labeled and unlabeled samples in sufficient quantit-
ies. However, the procurement of labeled samples in industrial
environments often proves to be both resource-intensive and
time-prohibitive, thereby constraining the method’s broader
implementation.

Few-shot learning (FSL) technology emerges as a cru-
cial advancement in addressing the limitations of traditional
GNN approaches, enabling models to achieve robust fault
representation learning under limited labeled sample condi-
tions through knowledge transfer and feature reuse mech-
anisms. Contemporary research on few-shot fault diagnosis
based on GNN primarily advances along three technical paths:
First and foremost, meta learning driven relationship mod-
eling transforms the topological similarity between devices
into transferable meta knowledge by constructing task aware
graph structures. In this context, Liu et al [27]. proposed a
semi-supervised meta-learning method with simplified graph
convolutional networks (Meta-SGC) to address bearing fault
diagnosis under complex working conditions and limited
samples. Secondly, the integration of prototype networks and
metric learning significantly improves the distinguishability of
fault categories. Li et al [28]. proposed a curriculum learning-
enhanced GNN to address label imbalance iuin node clas-
sification tasks. By integrating adaptive graph oversampling
and a hybrid loss combining graph classification loss with
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metric learning, this framework dynamically optimizes spa-
tial proximity of minority-class nodes while mitigating over-
fitting. Finally, the data generation strategy, when enhanced by
physical constraints, markedly expands the coverage of poten-
tial fault modes through domain knowledge-guided graph
enhancement techniques. Zhang et al [29]. introduced self-
mixup augmentation to synthesize diverse instances from
limited samples and designing calibration-adaptive down-
sampling to mitigate feature distortion caused by subsampling
violations, the method enhances both knowledge accumula-
tion and feature robustness. However, FSL still face various
limitations: limited cross-domain transfer due to equipment-
specific characteristics, increased noise sensitivity with scarce
samples, and difficulty adapting to dynamic operating condi-
tions that require temporal modeling of both monitoring data
and graph evolution.

Graph contrastive learning (GCL) emerges as a natural
evolution in addressing the collective challenges of both GNN
and FSL approaches, providing a novel paradigm by maximiz-
ing the similarity of similar samples in the feature space while
separating heterogeneous sample distributions. By leveraging
the strengths of self-supervised learning while mitigating the
dependencies on labeled data, GCL represents a signific-
ant advancement in the field of fault diagnosis. This self-
supervised approach extracts more discriminative and robust
graph structural features from unlabeled samples through the
construction of positive and negative sample pairs, integra-
tion of self-attention mechanisms, and learning from high-
dimensional attributes and local structural patterns. Notable
advancements have been made in addressing these chal-
lenges, such as, Liu et al [30]. sophisticated GCL model that
effectively learns from high-dimensional attributes and local
structural patterns, while Zhu er al [31]. innovative integ-
ration of self-attention mechanisms with GCL has demon-
strated exceptional performance in gearbox feature extraction.
Despite its promising advances, current GCL methods face
three significant challenges. The model’s generalization cap-
ability becomes constrained when transferring between tasks
with divergent data distributions, particularly in cross-domain
applications. In small sample scenarios, the limited scale of
negative sample pools, combined with traditional uniform
sampling approaches, often leads to confusion between fail-
ure modes of varying wear degrees, thereby compromising the
discriminative power of contrast edge distances. Furthermore,
the reliance on fixed distance metrics in existing comparative
loss functions hinders the optimal balance between preserving
local topological accuracy and maintaining global structural
integrity.

The main challenges for the reported methodologies are
summarized as follows:

1. High acquisition costs of industrial fault samples coupled
with traditional GNNs’ inability to extract meaningful spa-
tiotemporal features from limited annotated data, often
leading to misleading learning signals and degraded model
performance.

2. GCL’s fixed distance metrics fail to effectively differentiate
between noise-induced false connections and genuine

equipment relationships, causing semantic distortions in
node embedding space.

3. GCL-based fault prediction suffers from three key limita-
tions: insufficient supervision for complex fault classific-
ation, vulnerability to distribution shifts in new environ-
ments, and lack of model interpretability.

This research introduces the metric-guided GCL (MGCL)
framework to tackle fundamental challenges in industrial
fault diagnosis. At its core, MGCL develops three innov-
ative components: a feature-decoupled pre-training mechan-
ism that leverages graph data augmentation with large-scale
unlabeled learning, a sophisticated cosine-Euclidean hybrid
distance metric for enhanced feature discrimination, and a
two-stage training paradigm combining unsupervised pre-
training with weakly supervised fine-tuning. This approach
not only addresses the critical issues of sample scarcity and
annotation limitations but also strengthens model robustness
against domain shifts in real-world industrial applications. The
framework’s key technical contributions are as follows:

1. A feature-decoupled pre-training approach that combines
graph data augmentation with large-scale unlabeled data
learning, enhancing sample diversity and fault mode cov-
erage while building robust feature representations.

2. A novel cosine-Euclidean hybrid distance metric that
improves feature discrimination in small-sample scenarios
by leveraging both directional sensitivity and absolute spa-
tial differences. This metric not only optimizes the graph
topology, but also provides interpretable insights into the
advantages of feature relationships.

3. A two-stage training framework that integrates unsuper-
vised pre-training with weakly supervised fine-tuning,
effectively addressing annotation scarcity and domain shift
challenges in few-shot fault diagnosis.

The structural organization of the remainder of this paper
proceeds in a systematic manner through several interconnec-
ted sections. In section 2, we thoroughly examine and crit-
ically analyze the theoretical foundations underlying three
fundamental components: the dynamic graph attention net-
work (DGAT), which enables adaptive feature learning; GCL,
which facilitates representation learning through comparative
analysis; and K-nearest neighbor (KNN) graph construction,
which forms the basis of our graph topology. Subsequently,
section 3 presents a detailed exposition of our novel method-
ology, namely the MGCL, along with its architectural com-
ponents and theoretical underpinnings. Furthermore, section 4
offers a comprehensive presentation of our experimental find-
ings, accompanied by an in-depth comparative analysis with
state-of-the-art approaches and ablation studies. Building
upon these empirical results, section 5 systematically investig-
ates the individual contributions of core components through
ablation studies, specifically quantifying the impact of hybrid
distance metrics and pre-training strategies employing GCL.
Following this, section 6 provides a rigorous examination
of MGCL’s performance characteristics, including sensitivity
analyzes of critical hyperparameters such as the KNN graph’s
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sparsity factor, distance weighting coefficients in hybrid met-
ric design, and epoch-wise convergence patterns. Finally,
section 7 synthesizes our key contributions, draws meaning-
ful conclusions, and delineates promising directions for future
research endeavors in this field.

2. Related work

2.1. DGAT

The basic graph attention network (GAT) architecture, while
capable of capturing the relative importance of information
between neighboring nodes through iterative weight updates,
exhibits certain limitations due to its static attention mechan-
ism. Specifically, this mechanism fails to account for the tem-
poral evolution of connections between central nodes, which
consequently constrains the model’s expressive capacity and
representational power, which can be shown as:

¢;j = LeakyReLU (F) Wf; + F, Wf; 1)
ij Y !

where ¢;; is the importance of node V; to node V;, f; and f; are
feathers of nodes V; and V;, W denotes weight matrix, F; and
F, are the shared attention mechanism.

A fundamental limitation of the conventional GAT archi-
tecture lies in its parameter-sharing mechanism, wherein the
transformation matrices W, Fy, and F, in equation (1) are
globally shared across all nodes and applied in a sequential
manner. Consequently, these operations can be mathematic-
ally reduced to a single linear transformation layer, effectively
resulting in a static attention mechanism that lacks adaptive
capabilities. To overcome these architectural constraints, the
DGAT introduces a sophisticated aggregation mechanism for
central node processing. Specifically, the DGAT implements a
modified computational flow where the transformation matrix
W is strategically applied post-concatenation, while the com-
bined attention mechanism F = [F || F,] is positioned after the
Leakyrelu activation function. This architectural reorganiza-
tion enables the network to achieve truly dynamic attention
capabilities, allowing for more flexible and context-aware fea-
ture processing. The comprehensive computational workflow
within the DGAT layer is illustrated in detail in figure 1. The
dynamic attention score in DGAT is computed through the fol-
lowing mathematical formulation:

e;j = F-LeakyReLU (W - [fi|lfi]) @)
exp (e;)

= 3
2 _ken(i) ©XP (€ix) @

a;j = Softmax (e;;) =

where F represents a shared attention mechanism, and N(i)
represents the set of all nodes adjacent to node V;.

The attention computation process is fundamentally groun-
ded in the characteristic features of individual nodes and sys-
tematically incorporates the interconnected relationships with
neighboring nodes. This comprehensive approach signific-
antly enhances the model’s ability to capture and represent
complex graph structures. To illustrate this process more con-
cretely, consider the feature learning procedure at the /th layer

Figure 1. Architectural framework and computational flow diagram
of the dynamic graph attention network (DGAT) layer.

of DGAT, which can be mathematically expressed as:

W = [ ST awOn @)
JEN()

where o(-) denotes activation function, hi(l“) represents the

updated vector after node V; aggregates the information of

layer I, and W) is its learnable weight matrix.

2.2. GCL

GCL represents a sophisticated unsupervised learning frame-
work that has been specifically engineered to extract mean-
ingful node representations from unlabeled graph-structured
data. Through the careful design and implementation of com-
parative analysis tasks, GCL effectively enables neural net-
work models to systematically capture and distinguish both the
inherent consistencies and fundamental differences in graph
structures and node attributes when examined across multiple
augmented views of the same underlying data.

The Information Noise Contrastive Estimation (InfoNCE)
loss function has emerged as one of the most widely adopted
and theoretically well-grounded approaches in this domain,
primarily because it elegantly encapsulates the core principles
of contrastive learning. This mathematical framework oper-
ates by simultaneously pursuing two complementary object-
ives: maximizing the measured similarity between positive
sample pairs (instances that should be considered similar)
while minimizing the similarity between negative sample pairs
(instances that should be considered distinct). Formally, the
InfoNCE loss can be mathematically defined as:

exp (sim (le 7fiz) /7')

Z;V:1 1[/75] exp (Sim (f;l ’J?) /7_) (®)]

Loss = —log

where f!,f? represent the feature vectors of node V; in two
different views. sim denotes the function used to calculate
the similarity between feature vectors. 7 is the temperature
parameter used to adjust the sharpness of the similarity dis-
tribution. 1, represents the indicator function, ensuring that
sample V; is considered as a negative sample only if j is not
equal to i.
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2.3. Construction of KNN graph

The diagnostic analysis of planetary gearbox faults primar-
ily relies on one-dimensional vibration signal data, which
serves as the fundamental input for fault detection systems.
However, due to the inherently limited availability of such
fault samples and the considerable complexity of raw vibra-
tion signals, which inherently contain both ambient noise
and extraneous information irrelevant to fault characteristics,
it becomes imperative to implement signal processing tech-
niques. Consequently, we employ the fast Fourier transform
(FFT) algorithm, a typical mathematical tool that effectively
transforms the time-domain vibration signals into their cor-
responding frequency-domain representations.

This transformation through FFT proves particularly
advantageous because it not only facilitates the elimination of
spurious information and streamlines the signal structure, but
also considerably reduces the computational complexity asso-
ciated with subsequent analytical procedures. Furthermore,
the frequency-domain representation provides a more inter-
pretable framework for fault pattern recognition, as many
mechanical faults manifest distinctly in specific frequency
bands. In the subsequent phase of analysis, these frequency-
domain samples are systematically utilized as graph nodes
for the construction of the adjacency matrix, which forms the
foundational structure for graph-based fault classification. The
methodological framework for constructing the KNN graph
follows a well-defined protocol. For quantifying the relation-
ships between nodes, either Euclidean distance or cosine sim-
ilarity metrics are employed as the primary distance measures,
wherein the mathematical computation of distance follows the
formal expression:

d
DY = | > (v —x)’ 6)
k=1
d
D;:_os _ Zk:l ‘xil‘xjk (7)

7

- d d
\/Zk:l X \/Zk:l X

where Dji“ and Dy represent the Euclidean distance and
cosine similarity between the ith and jth nodes, respectively.
x; ;. represents the value of the ith node in the k£ dimension. d
is the total dimension of the node.

Based on the obtained distance, KNN clustering of nodes is
carried out, and edges are constructed to obtain the adjacency
matrix A € R"*":

i= ®

1 leGNk(]) /\jGNk(i)
0 otherwise

where N (i) denotes the set of KNNs of the ith node. A; ; is the
element of the adjacency matrix.

3. MGCL

As illustrated comprehensively in figure 2, the proposed
MGCL framework encompasses several interconnected

stages, each of which plays a crucial role in the overall
methodology. The framework begins with systematic node
feature extraction, followed by the graph representation.
Subsequently, the process advances to graph construction
through the implementation of hybrid distance metrics, which
enables more nuanced structural relationships. The framework
then proceeds with unsupervised model training to learn gen-
eral patterns, and ultimately culminates in weakly-supervised
model training that is specifically designed to address the
challenges of few-shot node classification tasks.

3.1. Node feature extraction and graph representation

For the graph-based signal processing and machine learning,
individual samples within the dataset are systematically rep-
resented as discrete nodes within the constructed graph struc-
ture, wherein node features constitute a fundamental and integ-
ral component of the graph’s architecture. The initial and cru-
cial step in the graph construction process involves executing
node embedding operations, which systematically extracts the
raw features of each sample and subsequently transforms them
into meaningful graph node features through a well-defined
mathematical framework.

Specifically, given an initial sample set denoted as X =
{X1,X2,...,X,}, where each X; represents a distinct sample
point, the corresponding spectrum features are obtained
through the application of the FFT, a computationally effi-
cient algorithm for spectral analysis. This transformation can
be mathematically expressed as:

F; = FFT (X)) ©)

where X; = {x; 1,X;2,...,% »} represents the ith sample, F; =
{fi1:fis- - fimy2} contains half of the results after FFT, and
it is used as node feature after normalization operation. By
repeating the same operation, all the sample features are con-
verted into node features, and the node feature matrix F €
R™ 7 is obtained.

3.2. Graph construction by hybrid distance metric integration

The establishment of inter-node connections represents a crit-
ical and fundamental step in graph construction. This pro-
cess systematically leverages node features to compute com-
prehensive distance matrices, subsequently utilizing the KNN
clustering algorithm to establish meaningful edge connec-
tions between nodes. The methodology employs a sophist-
icated dual-metric approach, wherein two distinct distance
matrices are computed and subsequently integrated into a
novel hybrid matrix. This integration process incorporates
both a cosine similarity-based distance matrix and a Euclidean
distance-based matrix. The cosine similarity-based approach
captures the directional relationships and angular similarit-
ies between node vectors, while providing robust measure-
ment invariant to magnitude scaling. Complementarily, the
Euclidean distance-based matrix quantifies the absolute geo-
metric distances between nodes in feature space and pre-
serves the magnitude-based relationships between data points.
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Step1: Node feature extraction and graph representation

F, = FFT(X))

Normalization

Vibration
data

Feature
extraction

Node feature matrix Spectral features

Step4: Weakly-supervised model training

Step2: Graph construction by hybrid distance

Spectral featurele ={F,F, .., E}

Cosine Slmllarityl Hybrid Distance lEuclldean Distance

c c B B E E
Hiy Hin, Hiy Hi, Hiy Hi,

C C B B E E
Hz, Hin Hy Hyn Hy, Hyn

Adjacent Matrix
A e R

Costruct graph

Step3: Unsupervised model training

Edge drop/add

&

IOriginal GraphI

Node drop

Figure 2. The proposed metric-guided graph contrastive learning (MGCL).

This metric not only optimizes the graph topology, but also
provides interpretable insights into the advantages of feature
relationships.

The strategic combination of these complementary distance
metrics is particularly advantageous for several reasons. First,
cosine similarity effectively captures directional correlations
between nodes, while Euclidean distance preserves crucial
spatial relationships in the feature space. Furthermore, their
integration yields a more comprehensive and nuanced repres-
entation of inter-node relationships, enabling a more accurate
characterization of the underlying data structure. The mathem-
atical formulation proceeds as follows:

F;-F;
1Eill2 (1512

where F; and F; are the node features of nodes V; and V;, HICJ
is an element of the first kind of distance matrix, representing
the Cosine similarity between nodes V; and V;.
For the Euclidean distance matrix HE € R"*":
Hiy = |Fi = Fjll2 (11)
where HE]. quantifies the Euclidean distance between nodes V;
and V;.
To ensure computational stability and metric compatibility,

the Euclidean distances undergo normalization. Subsequently,
the hybrid distance matrix integrates both metrics through:

HY; = 5 (Hy; + Hy)) (12)

N =

where HE]» is an element of the final distance matrix, represent-
ing the Hybrid distance between nodes V; and V;. € is a very
small positive number that prevents zero division errors that
occur when Hy; is equal to 0.

Finally, the adjacency matrix A € R"*" is constructed using
KNN relationships:

1,
0,

if V; € Ne(Vy)or Vi € Ni (V)

Ajj= )
otherwise

13)

where N (V;) represents the KNN node set of node V;, that is,
the set of k nodes that are closest to V;. A; ; denotes the element
of the adjacency matrix used in the composition.

3.3. Unsupervised model training framework

In this methodology, the original graph structure, denoted as
G = (V,E), undergoes two distinct data augmentation pro-
cesses, wherein V and E respectively represent the com-
plete sets of nodes and edges. Through these transforma-
tions, two enhanced graph variants, designated as G; and
G,, are systematically generated. The first augmentation tech-
nique involves edge manipulation, which encompasses both
stochastic edge removal and addition operations, implemen-
ted with a predetermined probability p,. This process can be
formally expressed as:

G, = (V1,E\) = ({vi | ri <pa,ri ~U[0,1],v; € V},

{(Vl',Vj) | Vi, Vi € Vi, (V,‘,V]‘) S E}) (14)
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where r; represents a randomly sampled value from a uniform
distribution UJ[0, 1], which subsequently determines the reten-
tion status of node v; within the augmented set V.

The second augmentation procedure, known as node drop-
ping, systematically removes vertices and their corresponding
edge connections from the initial graph structure with probab-
ility p.. This transformation can be mathematically represen-
ted as:

G2 = (Vg,Ez) = (V, {eij | rij <pe,r,~j ~ U[O, 1],

€jj € EU Epotential}) (15)

where r;; denotes a random value sampled from U[0, 1] that
governs whether edge ¢;; is maintained or introduced in £, and
Epotential €ncompasses all feasible edges that are not present in
the original edge set E.

Subsequently, both augmented graph structures are pro-
cessed through a unified DGAT architecture that main-
tains consistent parameters for feature representation learn-
ing across both graph variants. Specifically, a two-layer DGAT
framework is implemented for graph feature extraction, whose
layer-wise computations can be expressed as:

16
¥ — DGAT (¥, W) (10

{Y<1> — o (DGAT (F, W)
where o represents the rectified linear unit activation func-
tion, Y() € R"%¢ and Y@ € R"*¢ denote the respective out-
put representations from the first and second layers, while
W) € R™<¢ and W) € R°*¢ represent their corresponding
weight matrices. The final DGAT output undergoes transform-
ation through a fully connected (FC) layer, computed as:

¥ —Fc (v®) (17)
where Y* € R"*P represents the final FC layer output.

The enhancement strategy has been carefully designed to
preserve the basic frequency domain characteristics when
applied to Fourier transform signals. Although edge descent
introduces structural disturbances, its impact on the spectral
domain is limited as it prioritizes retaining the main low-
frequency components related to fault characteristics rather
than high-frequency edges dominated by transients or noise.
By limiting edge deletion to non dominant spectral regions,
ensuring that diagnostic connections remain intact, as demon-
strated by the consistent preservation of fault related spectral
peaks in enhanced samples. This method is consistent with
the inherent redundancy in mechanical systems, where local
edge removal simulates real-world signal variations without
eliminating global frequency patterns that are crucial for dia-
gnosis, thereby enhancing the model’s robustness to structural
irregularities while maintaining fidelity to identifying spectral
features.

The method generates a divergent enhanced view while
changing the local neighborhood composition and global
topological sparsity pattern. This multi-faceted perturbation
strategy amplifies the variability beyond traditional edge only
modifications: node deletion enforces robustness to missing

entities, while edge addition/deletion simulates fluctuating
relationship confidence. The contrastive learning framework
utilizes these structurally heterogeneous views to standardize
the encoder and prevent excessive reliance on transient sub-
structures, as matching node representations in the topology
changes caused by enhancement requires capturing invariant
semantic features. It is crucial that the composite randomness
in node edge operations ensures exponential growth of trus-
ted graph changes during the training process, systematically
expanding the potential spatial coverage range.

The model’s training process is guided by an unsupervised
contrastive learning loss function, which is systematically con-
structed through the generation and computation of positive
and negative sample pairs. This specialized loss function, as
detailed in equation (5), is specifically designed to simul-
taneously maximize the similarity between positive sample
pairs while minimizing the similarity between negative sample
pairs, thereby facilitating effective unsupervised learning.

3.4. Weakly-supervised model training methodology

Following the successful completion of unsupervised DGAT
model training, the pre-trained model undergoes further refine-
ment through training with a limited number of labeled
samples. During this phase, the previously established dis-
tance matrix continues to serve as the foundational structure
for implementing the weakly supervised training protocol. To
optimize the pre-trained DGAT model parameters effectively,
we employ the cross-entropy loss function, which is mathem-
atically expressed as:

(18)

1 T
1 0 1 (00
Loss = —YZZyi In (zi )
1 1

where the prediction label set z; € Z = {z;,--- ,z, } represents
the model’s output following the FC layer, I denotes the total
number of distinct labels in the dataset, and T corresponds to
(1

the number of possible states in the system. Furthermore, y;

signifies the #-dimensional value of the ground truth label y;,
while zft) represents the corresponding #-dimensional value of
the predicted label z;.

The comprehensive methodology can be systematically
outlined as follows: Initially, the raw data undergoes fea-
ture extraction and graph representation procedures to gen-
erate a robust node feature matrix. Subsequently, multiple
distance matrices are synthesized into a novel hybrid dis-
tance matrix, which is then utilized for pre-training the
initial DGAT model through unsupervised GCL. In the
final phase, the pre-trained DGAT model is further refined
through weak supervision, leveraging a carefully curated data-
set comprising a limited number of labeled samples, ulti-
mately enabling effective fault diagnosis capabilities. The
complete algorithmic workflow is rigorously detailed in
algorithm 1.
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Algorithm 1. Computational procedure and pseudo-code specifica-
tion of the MGCL architecture.

1: procedure StageOne(Initial sample set X = {X1,X>,...,Xu})

2:  Stage 1: Node feature extraction and graph representation
3:  Calculate the feature matrix F: F; = FFT(X;)

4:  Output the feature matrix F = {F,Fa,...,F,}

5: end procedure

6: procedure StageTwo(Feature matrix F)

7:  Stage 2: Graph construction by hybrid distance metric

integration

8: Calculate distance matrix HS based on cosine
similarity:H, = 1 — £l _
‘ Vi =1 T TFERIFR

9:  Calculate distance matrix H” based on euclidean distance:
Hi; = |[Fi = Fj

10:  Obtain the hybrid distance matrix H®: Hy; = }(H;,; + H},)

11:  Calculate the adjacent matrix A of KNN graph :

1, if V; € Ni(Vi)or Vi € Ni(V))

0, otherwise

12:  Output the original KNN graph G

13: end procedure

14: procedure StageThree(KNNG G = (V, E))

15:  Stage 3: Unsupervised model training

16:  Two methods of graph augmentation: (1) edge manipulation
(random addition or removal of edges) and (2) random node
deletion.

17: Initialize i=1

18:  while i < 350 do

19: Compute predictions Y§ «— DGAT(Fy,A;) and

Y} < DGAT(F1,A;)

20: Compute GCL loss

21: Update with back propagation

22: Increment i

23:  end while

24:  Output the pretrained DGAT

25: end procedure

26: procedure StageFour(Sample set containing a few labeled

samples V, Pretrained DGAT)

27: Stage 4: Weakly-supervised model training

28:  Divide the training node set and testing node set: Viygin, Viest
and two corresponding graphs: Gg, G

29: Initialize i=1

30:  while i <200 do

A,'J:

31: Compute prediction Y5 < DGAT(Fg,Ag)
32: Calculate cross-entropy loss

33: Update with back propagation

34: Increment i

35:  end while
36:  Output predicted label vector Z = DGAT(Fg,Ak)

={z1,,}

37: end procedure

4. Experimental results and comparative analysis

To rigorously evaluate and validate the efficacy of the pro-
posed MGCL framework, we present comprehensive analyzes
through two distinct case studies, each offering unique insights
into the methodology’s performance and applicability.

4.1. Case study |

4.1.1. Experimental setup and data acquisition protocol.
The experimental investigation was conducted utilizing a
sophisticated drivetrain prognostics simulator (DPS), manu-
factured by SpectraQuest Inc. as depicted in figure 3. This
advanced diagnostic platform incorporates several key com-
ponents: a precision-controlled variable speed drive motor,
an integrated planetary gearbox system, a dual-stage paral-
lel gearbox configuration, resistance-load gear boxes coupled
with a specialized resistance-load inducing electric load
motor, and a comprehensive electric control unit for precise
operational management.

The fundamental physical parameters of the planetary gear
system are meticulously documented in table 1. Our investig-
ation specifically focuses on the dynamic behavior of a spur-
geared planetary gearbox system integrated with a two-stage
parallel helical gearbox configuration. The experimental data-
set encompasses four distinct operational states: (1) broken
component condition, (2) chipped gear state, (3) crack forma-
tion, and (4) normal operational condition. Data acquisition
was performed under strictly controlled experimental con-
ditions, with horizontal position signals recorded at a high-
precision sampling frequency of 24 kHz, while maintaining
a consistent input speed of 20 Hz.

Based on the acquired experimental data, we systematic-
ally constructed the experimental dataset for comprehensive
methodology validation. This dataset comprises 120 distinct
samples for each operational state under controlled conditions,
resulting in a total of 480 samples across all four health states.
Each individual sample consists of 2048 data points, thereby
generating a complex graph structure with 480 nodes for GCL
implementation. For the weakly supervised training phase, we
employed a structured sampling approach, selecting 1, 3, 5,
and 10 nodes from each health state category to form vari-
ous training sets, while allocating 10 nodes for validation pur-
poses. The model’s performance evaluation was conducted
using 480 previously unutilized samples to construct the test
KNN graph through equation (8), with an equal distribution of
120 samples per health state. The architectural specifications
of the implemented DGAT model are detailed in table 2.

The enhancement methodology has been meticulously
engineered to maintain fundamental frequency domain char-
acteristics during Fourier transform signal processing, while
simultaneously introducing controlled perturbations that
strengthen the model’s learning capacity. Although the edge
descent procedure inherently introduces structural modific-
ations, its impact on the spectral domain remains carefully
circumscribed, as the algorithm deliberately prioritizes the
preservation of critical low-frequency components associated
with fault signatures rather than high-frequency elements typ-
ically dominated by transient phenomena or stochastic noise.
Furthermore, the strategic limitation of edge deletion to non-
dominant spectral regions ensures the integrity of diagnostic
pathways, as evidenced by the consistent retention of fault-
related spectral peaks across enhanced samples. This approach
aligns fundamentally with the inherent redundancy character-
istics of mechanical systems, wherein localized edge removal
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Figure 3. Illustration of the drivetrain prognostics simulation (DPS).

Table 1. Physical parameters of the planetary gear set in DPS.

Parameters Sun Planet (4) Ring Carrier
Number of teeth 28 36 100 —
Module [mm)] 1 1 1 —
Pressure angle [°] 20 20 20 —
Face width [mm)] 10 10 10 —
Young’s modulus [Pa] 2.1x 10" 21x10" 2.1 x 10"

Poisson’s ratio 0.3 0.3 0.3 —
Mass [kg] — — 9.86x 1072 —
Moment of inertia [kg-m?]  2.41 x 107® 1.60 x 107> 9.20 x 1073 4.99 x 10*
Base circle [mm] 13.2 16.9 47.0 —
Torsional stiffness [Nm~!] 0 — 1x10° 0
Torsional damping [N-sm~'] 0 — 1 x10° 0

Table 2. Structure of the DGAT model.

Layer Input channels  Output channels Params
GATv2Convl Feature 1024 Heads =4
Linearl 1024 1024 —
BatchNorm1 1024 1024 —
GATv2Conv2 1024 1024 Heads = 4
Linear2 1024 1024 —
BatchNorm2 1024 1024 —
FCL1 1024 512 Act: ReLU,
Inplace = True
Dropoutl 512 512 p=02
FCL2 512 Out_channel —
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Table 3. Comparative analysis of classification accuracy (%) for case study I.

Number of labeled samples

Model 1 3 5 10

AE+CNN 39.86 £3.03 68.13£13.24 74.65+£10.41 88.34+£3.76
AE+4SVM 35.90+£4.27 55.69£7.14 76.11£10.3 82.85+1.20
SSGCDBN 40.00 £4.45 68.54 £8.04 81.18+4.46 86.46+2.19
ChebyNet 43.47+£8.23 62.43 £2.62 71.18 £8.96 87.64£1.94
GRL-CSG 63.54£3.72 76.04 £4.83 82.08 £5.75 86.04 £3.22
Meta-SGC 62.71 £3.28 72.83£5.01 84.17+5.16 90.42 +6.24
Hyperfast 36.18 £6.80 62.50£11.19 75.83£6.05 87.08 £4.10
TabPFN 77.71+£1.63 83.33 +8.61 84.86 +6.37 89.44+2.43
Ours (MGCL) 92.91 +4.48 95.35 +3.12 96.81 + 3.08 99.52 + 0.43

effectively simulates real-world signal variations without com-
promising the global frequency patterns that are instrumental
in diagnostic processes.

The methodology’s sophisticated perturbation framework
generates divergent enhanced views through simultan-
eous manipulation of local neighborhood compositions and
global topological sparsity patterns. This multi-dimensional
approach transcends conventional edge-only modifications
by incorporating node deletion operations to foster resilience
against missing data points, while concurrent edge addition
and deletion processes simulate varying degrees of relation-
ship confidence within the network structure. The contrastive
learning framework leverages these structurally heterogen-
eous views to regularize the encoder’s behavior and mitig-
ate excessive dependence on transient substructures, as the
successful matching of node representations across topolo-
gically modified variants necessitates the capture of invari-
ant semantic features. Notably, the composite randomness
inherent in the node-edge operations facilitates exponen-
tial growth in the diversity of permissible graph transform-
ations throughout the training process, thereby systemat-
ically expanding the model’s spatial coverage and enhan-
cing its generalization capabilities across varied structural
configurations.

4.1.2. Analysis and comparison of diagnostic results. To
rigorously evaluate the efficacy of our proposed method-
ology, we conducted comprehensive comparative experi-
ments utilizing both traditional and State-of-the-Art dia-
gnostic approaches. The experimental framework incorpor-
ated four distinct FSL methods alongside several advanced
GNN architectures. The comparative methods encompass tra-
ditional approaches including auto-encoder (AE) with CNN
(AE4+CNN) [32] and AE with SVM (AE+SVM) [33], as
well as advanced GNNs such as Chebyshev polynomial-
based Graph Convolutional Networks (ChebyNet) [34] and
semi-supervised graph convolutional deep belief networks
(SSGCDBN) [35]. In addition, a graph comparison learning
framework based on graph representation learning and com-
ponent space graph (GRL-CSG) [36], as well as a few-shot
bearing fault diagnosis method by semi-supervised Meta-
SGC [27], have been introduced. Furthermore, modern FSL
approaches were represented by HyperFast [37], which is

100 4
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Figure 4. Evaluation of classification accuracy (%) across various
model architectures in case study I, where experiments were
conducted using 1, 3, 5, and 10 labeled training samples per fault
category. (Error bars represent the standard deviation based on n =28
independent trials).

optimized for rapid tabular data classification, and TabPFN
[38], which leverages causal inference for prior data fitting.
All methodologies underwent training using few-shot
samples and subsequent validation across an extensive test set
comprising 480 samples. Analysis of the diagnostic model’s
performance reveals compelling trends across multiple eval-
uation metrics, as demonstrated in both table 3 and figure 4,
which systematically present the classification accuracy res-
ults obtained when training with different quantities of labeled
samples (specifically 1, 3, 5, and 10 samples) per health
state category. The values highlighted in bold denote the
superior performance metrics attained through diverse meth-
odological approaches under experimental conditions. While
table 3 provides precise numerical data with corresponding
standard deviations, these variations are visually represen-
ted through error bars in figure 4, thereby offering com-
plementary perspectives on the model’s performance stabil-
ity. Furthermore, to provide a more comprehensive assess-
ment of the model’s diagnostic capabilities, table 4 presents
a detailed evaluation framework incorporating multiple per-
formance indicators, including Precision, Recall, and F1 score
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Figure 5. The T-SNE visualization of feature distributions for various methods in case study I. (a), (b), (c) represent models trained with 1,

5 and 10 samples per class, respectively.

Table 4. Comparative analysis results of key metrics (%) and running times for case study I.

Performance metrics based on 5 labeled samples

Running times

Method Precision Recall F1 score Training time(s) Test time(s)
AE+CNN 82.62+7.82 73.28+196 82.76+£0.82 3.27 2.73
AE+SVM 73.28+1.96 67.15+6.67 66.05+7.03 342 2.86
SSGCDBN 82.76+0.82 74.58+3.86 73.08+4.40 3.94 2.62
ChebyNet 72.00+6.02 68.75+4.16 68.37+3.93 3.93 2.65
GRL-CSG 82.82+4.28 80.66 +5.81 83.68 +2.77 5.76 4.22
Meta-SGC 85.794+3.98 86.26+4.77 8533+6.62 4.58 327
HyperFast 7593+7.02 7229+939  72.67+9.30 4.34 3.08
TabPFN 80.21+3.44 78.69+4.08 78.92+3.03 4.40 3.05
Ours MGCL) 96.29 +3.14 9528 +4.60 95.14 +4.81 5.01 3.90

metrics, specifically for the scenario where 5 labeled samples
per health state were utilized during the training phase.
Additionally, figure 5 demonstrates the T-SNE dimensionality
reduction visualization, and figure 6 presents the detailed con-
fusion matrix analysis. The observed time efficiency metrics
in table 4 demonstrate that our MGCL method incurs moder-
ate runtime increases, a consequence of its two-stage know-
ledge distillation process. The comprehensive time efficiency
analysis presented in table 4 reveals that our proposed MGCL
methodology, although introducing moderate computational
overhead due to its sophisticated two-stage knowledge dis-
tillation architecture, demonstrates a favorable performance-
complexity trade-off. Specifically, while the implementation
incurs an additional 1.74 s of training time relative to the
baseline AE4+-CNN approach, thereby suggesting marginally
higher computational resource requirements, this temporal
cost is outweighed by the significant performance improve-
ments, as evidenced by a 13.67% increase in absolute precision

and a 12.48% enhancement in F1-score metrics. Furthermore,
this disproportionate scaling between computational demands
and performance gains effectively validates our paradigm’s
practical utility, particularly in accuracy-critical applications
where slight latency tolerances can be leveraged to achieve
more refined decision boundaries and, consequently, super-
ior classification outcomes. The empirical results thus strongly
support the adoption of MGCL in domains where predic-
tion quality takes precedence over minimal processing time
constraints.

Our proposed model demonstrated superior performance
across all sample size conditions, achieving remarkable
accuracy rates of 92.91%, 95.35%, 96.81%, and 99.52%
respectively. This exceptional performance validates both
the model’s ability to effectively utilize limited labeled data
and its enhanced learning capabilities as data availability
increases. While traditional methods and modern approaches
like TabPFN showed improvement with increased sample
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Figure 6. Comparative analysis of confusion matrices for selected methods in case study I (10 samples per class): (a) AE+SVM, (b)
SSGCDBN, (c) ChebyNet, (d) GRL-CSG, (e) Meta-SGC, (f) HyperFast, (g) TabPEN, (h) ours (MGCL).

sizes, their performance remained notably inferior under few-
shot conditions.

In case study I, utilizing five labeled samples, our method-
ology achieved markedly higher metrics compared to exist-
ing approaches. Specifically, our method attained a pre-
cision of 96.29%, significantly outperforming TabPFN’s
80.21% and AE+CNN’s 82.62%. In terms of recall, our
approach achieved 95.28%, notably exceeding TabPFN'’s
78.69% and AE4+CNN’s 73.28%. The F1 Score of 95.14%
further demonstrated our method’s superior performance com-
pared to TabPFN’s 78.92% and AE+4+CNN’s 82.76%. The
T-SNE dimensionality reduction analysis, as illustrated in
figure 5, reveals superior feature extraction capabilities of our
method, demonstrating enhanced discriminative power across
all health states. This superior performance can be attributed to
our innovative hybrid distance matrix and pre-training meth-
odology, which effectively captures and utilizes the underlying
patterns in the data structure.

The confusion matrix visualization presented in figure 6
offers a detailed analysis of classification performance across
four distinct health states, with 120 test samples per state. The
horizontal coordinate represents the prediction label, while the
vertical coordinate indicates the true label. The results definit-
ively demonstrate the superior diagnostic capabilities of our
proposed approach, particularly validating the effectiveness
of our hybrid distance matrix in enhancing GNN-based fault
diagnosis under extremely low labeling rates. These compre-
hensive results empirically validate the robustness and effect-
iveness of our proposed methodology in planetary gearbox
fault diagnosis under limited data conditions. The consist-
ent superior performance across multiple evaluation metrics
and visualization techniques reinforces the practical applicab-
ility and reliability of our approach in real-world diagnostic
scenarios.

4.2. Case study Il

4.2.1. Experimental apparatus and data acquisition. The
experimental investigation employs a sophisticated test appar-
atus known as the drivetrain diagnostics simulation (DDS),
which serves as the primary platform for data collection and
analysis. The DDS system, as depicted comprehensively in
figure 7, constitutes an intricate assembly of meticulously
integrated components, each fulfilling distinct yet interde-
pendent functions within the experimental framework. The
apparatus encompasses a high-precision data acquisition sys-
tem, a driven motor that functions as the primary power input
source, a precision-engineered torque transducer for accurate
rotational force measurements, an advanced planetary gear-
box system, strategically positioned accelerometers for com-
prehensive vibration analysis, a parallel gearbox configura-
tion, and a sophisticated loading system designed to replicate
diverse operational conditions. Throughout the experimental
procedures, operational parameters were rigorously controlled
and standardized, whereby the input speed was precisely main-
tained at 20 Hz, while the output load was consistently regu-
lated at 0.35 A.

The experimental framework facilitated the development of
the dataset in case study II, which was specifically structured
for comprehensive method validation. This dataset encom-
passes 120 distinct samples for each identified health state,
and given that bearings manifest four discrete health states,
the complete dataset comprises 480 samples. Each individual
sample contains 2048 discrete data points, ensuring robust
statistical analysis. In maintaining methodological consist-
ency, the weakly supervised training process adopts identical
strategies to those implemented in case study I for the system-
atic construction of training, verification, and test sets. Other
key model parameters are set the same as in case study I.
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Figure 7. Diagram of the drivetrain diagnostics simulation (DDS).

Table 5. Comparative analysis of classification accuracy (%) for case study II.

Number of labeled samples

Model 1 3 5 10

AE+CNN 33.82+12.69 60.62£990  75.56+£8.50 83.87£8.07
AE+4+SVM 4570£16.39  55.62+7.19  69.03+£9.67 83.89+6.10
SSGCDBN 43.13 £8.31 53.89£5.08 69.58£8.46 86.46+1.82
ChebyNet 37.22+£2.30 59.17+6.67  71.324+8.50 80.97 £3.66
GRL-CSG 49.44+3.56 64.59+5.18  78.77+598 88.25+7.84
Meta-SGC 54.38+£6.21 68.14+£3.22  83.21+442 87.14£5.13
Hyperfast 37.08+11.50 5493£13.96 73.61+£6.58 83.89+3.07
TabPFN 33.54+1486  75.14£587 74.16+£4.03 86.74+5.44
Ours (MGCL)  80.97 4 0.48 91.87+146 92.36+5.02 95.07+3.53

4.2.2. Diagnosis results and comparative analysis.
Building upon the analytical framework established in case
study 4.1, this section presents a comprehensive evaluation
of the proposed methodology through rigorous comparison
with established diagnostic techniques, including AE+CNN,
AE+SVM, SSGCDBN, ChebyNet, GRL-CSG, Meta-SGC,
HyperFast, and TabPFN. The comparative diagnostic accur-
acy results for the DDS dataset are systematically presented
in table 5, while additional performance metrics are detailed
in table 6. The standard deviation in the table 5 is represen-
ted in the form of error bars in the figure 8. 1, 3, 5, and 10
respectively represent the number of labeled samples for each
type of fault during training. Furthermore, to enhance result
interpretation, we conducted sophisticated visualization ana-
lyzes through T-SNE dimensionality reduction, as illustrated
in figure 9, complemented by detailed receiver operating char-
acteristic (ROC) curve analyzes presented in figure 10.

The comparative analysis in case study II encompasses a
thorough examination of methodological performance across
multiple metrics, including accuracy, recall, and F1 score. As
evidenced by table 5 and figure 8, the proposed methodo-
logy demonstrates considerably performance advantages over
existing comparative methods across all labeled sample con-
ditions. Notably, even with the minimal condition of a single

labeled sample, our method achieved a notable accuracy of
80.97%, markedly surpassing alternative approaches, includ-
ing the previously leading TabPFN method, which achieved
only 33.54%. This performance differential became increas-
ingly pronounced as the number of labeled samples increased,
ultimately achieving peak accuracy of 95.07% with 10 labeled
samples. Furthermore, the comprehensive performance evalu-
ation and computational efficiency analysis, which was con-
ducted using 5 labeled samples per class as detailed in
table 6, demonstrates consistently superior results across all
critical performance metrics, whereby the proposed frame-
work achieved significant accuracy, recall, and F1 scores of
94.51%, 93.33%, and 93.25%, respectively. These empir-
ical findings indicate that our method outperforms existing
state-of-the-art approaches, including the next-best perform-
ing algorithm, Meta-SGC, which achieved a maximum accur-
acy of 86.27%. Although our proposed methodology exhibits
marginally increased computational overhead, this additional
processing time can be attributed to its sophisticated dual-
phase architectural design, which systematically incorporates
both pre-training and fine-tuning stages. Specifically, the pre-
training phase establishes robust and transferable feature rep-
resentations through self-supervised learning on unlabeled
datasets, whereas the subsequent fine-tuning phase leverages
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Figure 8. Evaluation of classification accuracy (%) across various model architectures in case study II, where experiments were conducted
using 1, 3, 5, and 10 labeled training samples per fault category. (Error bars represent the standard deviation based on n = 8 independent

trials).

Table 6. Comparative analysis results of key metrics (%) and running times for case study II.

Performance metrics based on 5 labeled samples

Running times

Method Precision Recall F1 score Training time(s) Test time(s)
AE+CNN 81.03+£1.05 79.30+1.77 79.63 £1.38 3.37 2.66
AE+SVM 79.12£3.91 76.33+3.40 75.93 £2.96 3.24 2.57
SSGCDBN  85.38£3.77 74.44+7.72 74.44 +£6.71 3.23 2.71
ChebyNet 74.05+3.64 70.56+3.55 70.21 +2.99 3.92 2.62
GRL-CSG 82.05+7.21 83.46+6.72 85.79 £2.98 5.26 4.07
Meta-SGC 86.27+£5.53 88.124+4.78 86.09 +£4.93 3.99 3.02
HyperFast 82.11£6.94 80.97 +7.89 81.06 £7.52 4.01 347
TabPFN 7736 +6.15 71.25+7.41 71.72 +£6.20 4.03 343
Ours(MGCL) 94.51 +1.33 93.33+2.46 93.25 +2.51 4.97 3.80

meta-learning principles to optimize these learned repres-
entations for few-shot classification tasks. Despite requir-
ing approximately 21.7% more training time compared to
the computationally fastest alternatives, our framework deliv-
ers a notably 9.13% improvement in classification accur-
acy over SSGCDBN, thus presenting a compelling trade-
off between computational efficiency and model perform-
ance, particularly in applications where prediction accuracy is
paramount.

The visual analysis of diagnostic performance through
T-SNE dimensionality reduction, as illustrated in figure 9,
reveals that features extracted through the proposed meth-
odology exhibit superior class separation and discriminative
characteristics compared to alternative approaches. The ROC
curve analysis presented in figure 10 provides comprehensive
evaluation of diagnostic performance across methodologies.
These curves plot true positive rates against false positive rates
along vertical and horizontal axes respectively, with classific-
ation efficacy quantified through area under curve (AUC) met-
rics. The AUC values range from 0.5 (indicating random clas-
sification) to 1.0 (perfect discrimination), with higher values
signifying superior diagnostic capability. The proposed meth-
odology demonstrates optimal performance, with all four ROC

curves exhibiting: (1) maximal proximity to the ideal upper-
left corner relative to all comparative methods, and (2) consist-
ently superior AUC scores. This dual evidence provides robust
validation of both the methodological advancement and oper-
ational effectiveness of our approach.

5. Ablation study

To systematically evaluate the effectiveness of our proposed
framework and validate the contribution of each key com-
ponent, we conduct comprehensive ablation experiments. The
exceptional performance of our proposed methodology stems
from the synergistic integration of multiple innovative com-
ponents, particularly in addressing the challenges of few-shot
fault diagnosis. We analyze two critical aspects:

1. The implementation of a sophisticated hybrid distance met-
ric for sample similarity assessment, which facilitates the
construction of more semantically meaningful and topolo-
gically refined graph structures. This approach transcends
the limitations inherent in conventional single-distance
measurements.
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Figure 9. The T-SNE visualization of feature distributions for various methods in case study II. (a), (b) represent models trained with 5 and

10 samples per class, respectively.

. The integration of an unsupervised GCL framework for
graph convolutional network (GCN) pre-training, which
serves the dual purpose of expanding the effective dataset
dimensionality while enhancing the network’s capacity for
nuanced graph feature extraction.

The empirical evidence presented in sections 4 and 6.2
comprehensively demonstrates the superior efficacy of our
hybrid distance metric in addressing few-shot diagnostic chal-
lenges compared to traditional single-distance approaches.
To rigorously evaluate the contributive impact of GCL, we
conducted systematic ablation experiments with carefully
designed control groups, comparing diagnostic performance
with and without GCL pre-training across multiple GNN
architectures, including GCN [23], SSGCDBN, ChebyNet,
and DGAT. The comparative analysis across two distinct case
studies is visualized in figure 11.

The experimental outcomes decisively demonstrate that
GCL pre-training consistently enhances diagnostic accuracy
across both datasets, validating its fundamental importance
in our methodology. Moreover, the universal improvement in
performance across diverse GNN architectures when incorpor-
ating GCL pre-training substantiates the broad generalizabil-
ity of our approach. This enhanced performance can be attrib-
uted to the GCL framework’s embedded graph augmentation
strategy, which effectively expands sample diversity and con-
sequently strengthens the model’s generalization capabilities.

6. Comprehensive analysis of MGCL performance
characteristics and algorithmic optimization

6.1 Empirical investigation of neighborhood parameter
dynamics and their impact on classification performance

The selection of optimal neighborhood parameters in graph-
based analysis presents a critical consideration that warrants
systematic empirical investigation. Figure 12(a) illustrates the
diagnostic performance metrics of the proposed methodology

across varying k-value configurations. The experimental res-
ults demonstrate that neighborhood parameter selection exhib-
its pronounced influence on diagnostic efficacy. In case study
I, the model achieves peak performance with k = 3, yielding a
classification accuracy of 96.81%, while case study II demon-
strates optimal results with k = 2, achieving 93.33% accur-
acy. A notable observation emerges regarding the relationship
between k-value scaling and diagnostic precision: the classi-
fication accuracy exhibits a characteristic oscillatory decline
as k increases. This phenomenon can be primarily attributed
to the inherent constraints of FSL scenarios, where larger k
values inadvertently increase the probability of establishing
edge connections between samples belonging to distinct class
labels, thereby potentially compromising the model’s discrim-
inative capacity.

6.2. Optimization and analysis of hybrid distance metric
weighting

The experimental investigation into the effects of distance met-
ric hybridization ratios on classification performance reveals
a complex and notably nonlinear relationship, as compre-
hensively demonstrated in figure 12(b). Furthermore, when
implementing a strategically balanced fusion approach that
incorporates equal weighting between Euclidean distance
and cosine similarity metrics, both experimental case studies
exhibited pronounced performance improvements, with case
study I achieving a classification accuracy of 96.04% and case
study II reaching 92.88%, which represent significant abso-
lute improvements of 6.25% and 8.50% over their respective
baseline configurations.

This enhanced performance can be attributed to the syn-
ergistic interaction between the complementary characterist-
ics of Euclidean distance, which primarily captures abso-
lute differences in feature magnitudes, and cosine similar-
ity, which specifically focuses on the directional alignment
of feature vectors. Moreover, this balanced weighting strategy
proves particularly advantageous in FSL scenarios, where the
inherent constraint of limited labeled samples necessitates
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Figure 10. The ROC curves for comparative methods using 5 samples per class in case study II: (a) AE+-CNN, (b) AE4+SVM, (c)
SSGCDBN, (d) ChebyNet, (e) GRL-CSG, (f) Meta-SGC, (g) HyperFast, (h) TabPEN, (i) ours (MGCL). Fault categories 0~3 correspond to
broken, chipped, crack, and normal conditions, respectively.
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Figure 11. Comparative analysis of GCL impact on diagnostic performance. (a) Performance metrics for case study I demonstrating GCL
enhancement across different GNN architectures. (b) Parallel analysis for case study II validating consistent performance improvements
with GCL integration. (Error bars represent the standard deviation based on n = 8§ independent trials).
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Figure 12. Comprehensive performance analysis: (a) Classification accuracy across varying neighborhood parameters (k-values). (b)
Performance metrics under different Euclidean distance weighting schemes.

maximum feature discriminability for optimal classification
outcomes.

6.3. Comprehensive analysis of training dynamics and
convergence behavior

The investigation into optimal training configurations reveals
intricate patterns in both pre-training and fine-tuning phases.
During pre-training, as illustrated in figure 13(a), the loss tra-
jectories over 150 epochs demonstrate distinct convergence
characteristics: the green curve exhibits moderate initial volat-
ility before stabilizing approximately at 1.85, whereas the yel-
low curve displays more pronounced early-phase oscillations
before converging around 1.90. Additionally, both trajectories
manifest epoch-dependent stabilization properties, with loss
values consistently stabilizing after 300 epochs, thereby estab-
lishing a critical threshold for optimal parameter convergence.

In the fine-tuning phase, as depicted in figure 13(b), both
case studies demonstrate distinctive convergence patterns

across 200 training epochs. Specifically, both scenarios
exhibit aggressive accuracy improvements within the initial
60 epochs, with both achieving the 80% validation accuracy
milestone by epoch 40, followed by logarithmic growth char-
acteristics. Furthermore, while case study I approaches peak
accuracy around epoch 80, case study II demonstrates a more
gradual convergence trajectory, ultimately reaching its per-
formance plateau at approximately epoch 120.

The comprehensive convergence analysis underscores the
fundamental importance of pre-training in expediting fine-
tuning convergence and enhancing model stability across both
case studies. Specifically, as evidenced in figure 13(a), the
pre-training phase facilitated rapid loss reduction, achiev-
ing stabilization below 1.85 at epoch 225. Consequently,
this optimized parameter initialization contributed to accel-
erated precision gains during fine-tuning, as demonstrated in
figure 13(b), where the case studies achieved notable accur-
acy rates of 99.16% and 96.25% respectively within just 50
epochs. Moreover, the stable loss platform established during
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Table 7. Experimental results under various noise conditions.

SNR (dB)
Evaluation metric 10 5 0 No noise
Accuracy (%) 92264238 91.87+145 88.78+3.78 93.33+£2.46
F1 score (%) 92.31£3.01 91474053 89.42+422 93254251
Precision (%) 91.76 £3.44 92224265 91.31+£2.01 94514133

pre-training correlates strongly with reduced accuracy fluctu-
ations during subsequent fine-tuning, particularly evident in
case study II’s exceptional stability between epochs 120-160.

6.4. Robustness analysis under various noise conditions

To rigorously evaluate signal processing robustness, the
investigation incorporated various levels of Gaussian noise,
characterized by signal-to-noise ratios (SNRs) of 0 dB, 5 dB,
and 10 dB, into the case study II dataset. The noise levels
were calculated according to the standard SNR formula:
SNR(dB) = 10log, (i‘—f"“‘), where Ppise represents noise
power and Pg;gna denotes signal power.

The experimental findings, as presented in table 7, demon-
strate that while the proposed methodology maintains reliable
performance at SNR levels exceeding 5 dB, there is a notable
degradation in performance at 0 dB SNR. This performance
deterioration can be primarily attributed to the fundamental
reliance of the graph structure on inter-sample similarities;
specifically, the introduction of significant noise can signific-
antly diminish these similarities, even among samples shar-
ing identical labels, thereby compromising the integrity of the
sample connectivity network and, consequently, degrading the
overall graph quality.

6.5. Exploration and analysis of pre-processing
methodologies

6.5.1. Comparative analysis of graph construction strategies.

In our comprehensive comparative analysis of graph construc-
tion methodologies, we observed notable disparities in per-
formance characteristics when evaluating various approaches

under strictly controlled experimental conditions. The study
specifically focused on 480 node graphs encompassing four
balanced fault classes, thereby establishing a robust frame-
work for comparative assessment. As evidenced by the empir-
ical results presented in table 8, each construction strategy
exhibited distinct behavioral patterns with respect to con-
nectivity metrics and classification efficacy. The FC approach,
while conceptually straightforward, demonstrated the limit-
ations of excessive connectivity in practice. Although this
method generated an exhaustive network structure compris-
ing 229920 edges and maintaining a maximum average
node degree of 479, it paradoxically achieved merely 25%
classification accuracy. This suboptimal performance can be
primarily attributed to the overwhelming presence of noise-
induced connections, which effectively obscured the underly-
ing fault-relevant patterns within the data structure. In con-
trast, the implementation of threshold-based methodologies
yielded substantially more promising results. The Euclidean
e-graph, when configured with a threshold parameter of 0.3
times the average distance, effectively reduced the edge count
to 1812 while simultaneously forming 118 isolated compon-
ents. This configuration achieved a marked improvement in
classification accuracy to 90.62%, while maintaining a rel-
atively sparse average node degree of 3.78. Furthermore,
the cosine similarity approach, operating with a threshold
set at 1.2 times the average similarity, demonstrated even
more favorable characteristics by establishing 3812 edges
and only 35 components, thereby achieving an impressive
97.29% accuracy with an average node degree of 7.94. Most
notably, the KNNs graph construction strategy, implemen-
ted with k = 3, emerged as the optimal solution among all
tested approaches. This method achieved superior classifica-
tion performance with 98.96% accuracy, despite—or perhaps
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Table 8. Comparative results of different graph construction strategies.
Number of Number of connected  Average node
Graph type edge components degree Accuracy (%)
Fully connected graph 229 920 1 479 25.00
Euclidean distance 1812 118 3.78 90.62
e-neighborhood graph
Cosine similarity 3812 35 7.94 97.29
e-neighborhood graph
KNN graph 1440 110 3.0 98.96
Table 9. Performance comparison of different distance metrics in graph construction for fault diagnosis.
Homophily Number of connected  Average node
Distance metric ratio(%) components degree Accuracy (%)
Manhattan 89.17 114 3 85.21
Chebyshev 87.81 111 3 89.17
Mahalanobis 48.23 180 3 82.29
Euclidean 62.53 61 3 92.50
Cosine similarity 89.37 118 3 92.92
Hybrid 90.52 128 3 95.42
because of—its inherent sparsity, maintaining only 1440 edges 6.5.2. Distance analysis of graph construction. In the

and an average node degree of 3.0, albeit with 110 distinct
components.

These empirical findings illuminate two fundamental prin-
ciples governing effective graph construction for fault classi-
fication tasks. First, the establishment of appropriate sparsity
levels must carefully balance the preservation of local neigh-
borhood relationships with the maintenance of global struc-
tural coherence. This principle is particularly evident in the
case of the Euclidean graph, where excessive reduction in
edge density resulted in significant fragmentation across 118
disconnected components, thereby potentially impeding the
propagation of relevant information between disparate regions
of the graph structure and consequently limiting potential
accuracy improvements. Second, the superior performance of
the cosine similarity graph can be attributed to its enhanced
capability in capturing semantic relationships within the fea-
ture space. The moderate increase in edge density to 3812
connections, coupled with a reduced component count of 35,
facilitated more robust feature-space clustering—a character-
istic that proved instrumental in effective fault discrimina-
tion. Most significantly, the KNN approach’s sophisticated
topology optimization strategy demonstrated the advantages
of adaptive connectivity over global threshold-based meth-
ods. By selectively establishing connections between each
node and its three most relevant neighbors, this method suc-
cessfully minimized noise interference while preserving cru-
cial diagnostic relationships, notwithstanding the presence
of 110 fragmented components. The remarkable efficacy of
this context-aware local connectivity paradigm, as evidenced
by its achievement of 98.96% classification accuracy, sub-
stantiates the superiority of adaptive neighborhood selection
over rigid, threshold-based similarity metrics in this specific
classification context.

domain of fault diagnosis systems, a rigorous comparat-
ive analysis and systematic evaluation of various distance
metrics was conducted to construct an optimal fault diagnosis
graph, with comprehensive results documented in table 9.
Among the conventional distance measures, the Manhattan
and Chebyshev metrics demonstrated relatively satisfactory
performance, yielding classification accuracies of 85.21% and
89.27%, coupled with homogeneous edge ratios of 87% and
89%, respectively. However, despite its theoretical sophist-
ication, the Mahalanobis distance exhibited significant lim-
itations, manifesting in severe structural fragmentation with
180 distinct connected components and a notably insufficient
homogeneous edge ratio of 48.23%, thus revealing funda-
mental constraints in its capacity to effectively model high-
dimensional fault data distributions. In contrast, the Euclidean
distance metric showed marked improvement, achieving a
more promising accuracy of 92.50% and a homogeneous edge
ratio of 62.53%, while substantially reducing the number of
connected components to 61. Furthermore, the implement-
ation of cosine similarity demonstrated even more substan-
tial enhancement, elevating the accuracy to 92.92% through
a remarkably high homogeneous edge ratio of 89.37%. Most
notably, the proposed hybrid distance approach, although
presenting considerable fragmentation with 128 components,
achieved superior performance metrics with a peak accur-
acy of 95.42% and an impressive homogeneous edge ratio
of 90.52%, thereby validating its effectiveness in optimizing
structural pattern recognition.

The methodological rationale behind selecting Euclidean
distance and cosine similarity as complementary components
in the hybrid approach stems from their fundamentally dis-
tinct yet mutually reinforcing capabilities in characterizing
fault signatures. Specifically, the Euclidean distance metric
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Table 10. Comparison of feature extraction methods in graph-based
fault diagnosis.

Homophily
Feature extraction ratio(%) Feature dim  Accuracy (%)
Raw signal 62.34 2048 82.38
STFT 83.41 512 93.54
CFT 87.96 128 94.17
DFT 88.68 1024 90.21
DTFT 88.85 256 92.42
FFT 90.52 1024 95.42

excels in quantifying absolute spatial proximity within the fea-
ture space, which is paramount for physical fault localization,
as evidenced by its moderate but meaningful homogeneous
edge ratio of 62.53% and substantial diagnostic accuracy
of 92.50%. Correspondingly, cosine similarity demonstrates
particular proficiency in capturing directional feature rela-
tionships, which proves essential for identifying complex
semantic fault patterns, such as harmonic distortions in vibra-
tion spectra, as reflected in its superior homogeneous edge
ratio of 89.37%. The strategic integration of these comple-
mentary metrics enables the hybrid distance measure to effect-
ively synthesize both magnitude-based locality information
and direction-based functional relationships. Consequently,
this dual-mechanism approach establishes a robust theoretical
foundation that successfully combines physical and semantic
fault characteristics, ultimately achieving exceptional fault
discrimination accuracy of 95.42%, despite the increased
graph fragmentation. This remarkable performance under-
scores the significant advantages of leveraging complementary
distance metrics in advanced fault diagnosis applications.

6.5.3. Comparative analysis and performance assessment
of feature extraction methodologies in graph-based fault
diagnosis. A comprehensive empirical investigation into
the efficacy of various feature extraction techniques for graph-
based fault diagnosis systems reveal a significant perform-
ance disparity between raw signal processing and spectral ana-
lysis methods, thereby emphasizing the fundamental import-
ance of frequency-domain transformation in fault detection
applications, as systematically documented in table 10. When
examining raw signal processing approaches, substantial lim-
itations become apparent, manifesting in a notably low homo-
geneous edge ratio of 62.34% and suboptimal diagnostic
accuracy of 82.38%. These inadequate performance met-
rics can be primarily attributed to the inherent susceptibility
to noise interference and the computational burden of pro-
cessing high-dimensional data spaces, specifically the 2048-
dimensional feature vectors, which fundamentally impede the
effective construction of graph-based relational models. In
contrast, spectral analysis methods consistently demonstrate
superior performance characteristics, albeit with distinctive

20

structural variations among different techniques. The short-
time Fourier transform (STFT) exhibits considerable improve-
ment, achieving an 83.41% homogeneous edge ratio and
93.54% diagnostic accuracy. The continuous Fourier trans-
form (CFT) further enhances these metrics, delivering 87.96%
homogeneous edges and 94.17% accuracy. While the dis-
crete Fourier transform (DFT) maintains a robust homogen-
eous edge ratio of 88.68%, it experiences a moderate reduction
in accuracy to 90.21%. The discrete-time Fourier transform
(DTFT) achieves a well-balanced performance profile, com-
bining an impressive 88.85% homogeneous edge ratio with a
substantial 92.42% accuracy rate.

The relatively narrow performance differential observed
among various spectral analysis methods can be attributed
to their shared fundamental capability in extracting noise-
resistant discriminative signatures, which the graph-based
framework effectively translates into cohesive homophilic
structures. Most notably, the FFT demonstrates exceptional
performance, achieving optimal results with a 90.52% homo-
geneous edge ratio and 95.42% diagnostic accuracy, primar-
ily due to its superior capability in preserving transient har-
monic components and maintaining phase coherence across
the frequency spectrum. Remarkably, even potentially subop-
timal implementations such as the DFT maintain a substan-
tial 88.68% homogeneous edge ratio, thereby highlighting the
inherent robustness and adaptability of the graph-based frame-
work in accommodating various degrees of feature imperfec-
tion while maintaining reliable diagnostic performance.

7. Conclusion

In summary, the MGCL framework has successfully
addressed several critical challenges in industrial fault dia-
gnosis, particularly for planetary gearbox systems. Our
approach overcomes the conventional limitations of exist-
ing GNN and GCL methods through two key innovations:
a feature-decoupled pre-training mechanism that markedly
improves diagnostic accuracy compared to baseline meth-
ods, and a hybrid distance metric that enhances fault pattern
recognition in complex mechanical systems. The framework
demonstrates pronounced practical utility through its abil-
ity to effectively process unlabeled operational data, achiev-
ing exceptional diagnostic accuracy in real-world industrial
deployments while significantly reducing the requirement for
labeled training data. In industrial trials across multiple manu-
facturing facilities, our solution has shown outstanding reliab-
ility in early fault detection, maintaining minimal false alarms
and providing considerable advance warning before critical
failures occur. These achievements directly translate to con-
siderable cost savings and improved system reliability, as val-
idated through extended deployment periods across diverse
industrial settings. While the framework has demonstrated
robust performance in rotating machinery applications, its
underlying principles extend to broader mechanical contexts
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through appropriate feature engineering adaptations. For non-
rotating or impact-based systems, the framework can be effect-
ively implemented by emphasizing relevant time-domain or
statistical features rather than purely spectral characteristics.
This flexibility in feature representation, combined with the
adaptable hybrid distance metric, enables the framework’s
application across various mechanical systems, from rotat-
ing equipment to impact-based machinery and non-periodic
systems.

However, several limitations warrant consideration for
future research. The framework currently requires significant
domain expertise for metric selection, considerable compu-
tational resources for real-time processing in large-scale sys-
tems, and lacks explicit interpretability mechanisms for oper-
ators to understand diagnostic decisions. Future work should
explore adaptive metric learning mechanisms that can auto-
matically adjust to varying fault patterns and operating con-
ditions. Additionally, investigating the integration of tem-
poral dynamics into the graph representation could enhance
the framework’s capability to capture evolving fault signa-
tures. The development of explainable components within
the model architecture would also increase its practical
utility by providing interpretable insights into fault detec-
tion decisions. Furthermore, research into optimizing fea-
ture extraction strategies for different mechanical contexts
would enhance the framework’s generalizability and facilit-
ate its broader industrial adoption across diverse mechanical
systems.
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