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Abstract
Intelligent fault diagnosis based on deep learning has shown promising results in industrial
applications, yet the requirement for large labeled datasets remains a significant limitation in
real-world deployments. This paper proposes a novel physics-aware dynamic spectral modeling
integrated with weakly supervised few-shot learning (PADSM-WSFL) framework for fault
diagnosis in planetary gearboxes. The key innovations include: (1) integration of physics-based
modeling with deep learning to enhance feature extraction, (2) a unique combination of weakly
supervised and few-shot learning that effectively utilizes abundant unlabeled data while
requiring only extremely limited labeled samples, and (3) a graph-based feature extraction
module that captures complex fault patterns. The framework consists of three main components:
a physics-aware dynamic spectral modeling approach, a graph construct module for feature
extraction, and the integration of weakly supervised learning with few-shot learning models.
Experimental validation on two machinery fault diagnosis datasets demonstrates that
PADSM-WSFL achieves superior robustness and generalization capabilities compared to
state-of-the-art methods, providing an effective solution to the critical challenge of limited
labeled data in industrial fault diagnosis.
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1. Introduction

Planetary gearboxes are crucial components in a wide range of
industrial applications, including wind turbines, helicopters,
electric motors, and hybrid vehicles, where they ensure effi-
cient performance [1–5]. However, these gearboxes are prone
to damage such as wear, cracking, and tooth breakage due
to sustained high-speed operation and fluctuating load condi-
tions. If these failures are not promptly detected and addressed,
they can pose significant safety hazards. Therefore, developing
advanced and effective fault diagnosis methods is essential for
the early detection of potential failures, ensuring safe and reli-
able operation, and enhancing overall operational reliability.

In recent years, data-driven fault diagnosis methodolo-
gies, particularly those harnessing the power of deep learn-
ing techniques, have undergone rapid and significant advance-
ments. This remarkable progress can be largely attributed to
deep learning’s exceptional capacity to automatically extract
high-level representations from raw signals and subsequently
achieve highly accurate diagnostic predictions in an end-to-
end manner. Over the past decade, a plethora of impress-
ive algorithms based on deep learning have emerged, encom-
passing, but not limited to, convolutional neural networks
(CNNs) [6, 7], generative adversarial networks (GANs) [8],
recurrent neural networks (RNNs) [9] and the Transformer
model [10–12]. To illustrate the efficacy of these approaches,
several studies have made contributions to the field. For
instance, Wang et al [13] introduced a novel adaptive normal-
ized convolutional neural network (ANCNN), which demon-
strated remarkable performance by achieving over 99.8% dia-
gnostic accuracy and excellent stability in experimental set-
tings. In another significant development, Shi et al [14] pro-
posed an innovative bidirectional-convolutional long short-
term memory (BiConvLSTM) deep neural network. This
advanced model simultaneously extracts spatial and temporal
features from vibration and rotational speed measurements,
thereby achieving superior accuracy in identifying gearbox
faults compared to traditional methods. Furthermore, Chen
et al [8] made a substantial contribution by introducing a novel
threshold self-setting health condition monitoring (HCM)
scheme for wind turbine generator bearings. This innovative
approach utilizes deep convolutional generative adversarial
networks (DCGANs) to automate the threshold-setting pro-
cess, thereby enhancing monitoring accuracy and mitigating
the risk of misdiagnosis. Additionally, Chen et al [15] pro-
posed a physics-informed hyperparameters selection strategy
for LSTMmodels, which enhances fault detectability by max-
imizing the discrepancy between healthy and fault states.
Snyder et al [16] proposed a novel dual-head ensemble trans-
former (DHET) algorithm that integrates a 1D Transformer
model and a 2DVision Transformermodel to enhance the clas-
sification of signals with time-frequency features.

Despite the excellent performance of deep learning-based
approaches, they require substantial labeled data for training,
which poses challenges for fault diagnosis methods in real-
world industrial applications:

1. Analyzing and identifying fault types in mechanical sys-
tems is time-consuming and labor-intensive. Consequently,
producing large amounts of manually labeled data is
impractical and often infeasible.

2. Deep learning-based fault diagnosis heavily relies on sub-
stantial labeled fault samples. This requirement poses a sig-
nificant challenge in real-world applications, as labeling
often requires domain experts and equipment disassembly.

3. In real-world industrial equipment, machines rarely operate
in faulty states for long periods, resulting in imbalanced
data where normal operations dominate and fault signals
are scarce.

4. Limited labeled samples frequently lead to overfitting in
deep neural networks, resulting in suboptimal parameter
optimization and reduced performance on new data.

In light of the persistent challenges associated with
fault diagnosis in the context of limited dataset availabil-
ity, researchers have diligently explored and implemented a
range of sophisticated methodologies to mitigate the reliance
on extensive supervised data. Among these approaches, tra-
ditional techniques such as data augmentation [8] and trans-
fer learning [17] have been widely adopted and refined.
Building upon these foundational methods, Luo et al [18] have
proposed an innovative imbalanced fault diagnosis method
that leverages a conditional-deep convolutional generative
adversarial network (C-DCGAN). This advanced approach not
only enhances feature extraction capabilities but also utilizes
generated samples to significantly improve both the accur-
acy and stability of fault diagnosis processes. Furthermore,
Ha and Fink [19] have introduced the novel concepts of
scaled CutPaste and FaultPaste, which ingeniously incorporate
domain knowledge to create highly realistic faulty samples and
effectively scale fault severity. These techniques have demon-
strated particular efficacy in the domain of planetary gearbox
diagnostics, especially when confronted with domain shifts.
Complementing these advancements, Cheng et al [20] have
developed the Q networks calibrated ensemble (QCE)method,
which aims to enhance both the generalization and robust-
ness of cross-domain fault diagnosis. The effectiveness of this
approach has been rigorously validated through experiments
conducted on a nuclear circulating water pump test bench.

Furthermore, in order to address the aforementioned chal-
lenges, such as limited labeled samples, few-shot learning
(FSL) has emerged as a promising and viable solution for mit-
igating these constraints in the field of intelligent fault dia-
gnosis. This approach has garnered significant attention from
researchers due to its potential to overcome data scarcity issues
that have long hindered the development of robust diagnostic
systems. To elucidate the growing importance of FSL in this
domain, several noteworthy studies have been conducted, each
contributing unique methodologies and insights to the field.
For instance, Jin et al [21] propose an innovative ordinal clas-
sification prototypical networks (OCPN)model, which ingeni-
ously integrates ordinal regression into prototypical networks.
This integration aims to enhance fault diagnosis of offshore
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wind turbines by simultaneously addressing the issues associ-
ated with limited high-quality labeled data and varying fault
severity. Consequently, the OCPN model represents a sig-
nificant advancement in tackling these dual challenges that
have historically impeded accurate fault diagnosis in com-
plex industrial systems. In a parallel effort, Yue et al [22]
introduce a novel multiscale wavelet prototypical network
(MWPN) that specifically targets the problem of few-shot
fault diagnosis across different rotating components. By lever-
aging a multiscale wavelet convolution module for feature
extraction and a metric meta-learner for distance measure-
ment, their model exhibits superior performance in exper-
imental trials. This approach demonstrates the potential of
combining advanced signal processing techniques with meta-
learning strategies to improve diagnostic accuracy in scen-
arios with limited training data. Moreover, Liu et al [23] have
made a substantial contribution to this domain by proposing
the attentional contrastive calibrated transformer (ACCT) for
intelligent fault diagnosis. This sophisticated model addresses
the challenges of sharp speed variations and limited data
through a synergistic combination of convolutional layers and
transformers for global dependency modeling. Additionally,
it incorporates an innovative unsupervised contrastive learn-
ing regularization to enhance feature representation, thereby
improving the model’s ability to generalize from limited
examples.

Inspired by the success of semi-supervised learning (SSL)
in other domains, researchers have developed a hybrid
approach known as few-shot semi-supervised learning, which
merges SSL techniques with few-shot learning paradigms.
This approach typically involves pretraining a prototypical
network (PN) with limited labeled data, subsequently using
SSL methods to select pseudolabels, and then fine-tuning the
PN with these pseudolabels. As a result, this innovative com-
bination has shown promise in enhancing generalization and
overall performance in fault diagnosis tasks. In alignment with
this trend, Lao et al [24] present a semi-supervised weighted
prototypical network (SSWPN) specifically designed for fault
classification in switch machines. This model enhances dia-
gnostic performance in scenarios with limited labeled data
by incorporating an effective dual-scale neural network archi-
tecture and a novel prototype updating strategy. Thus, the
SSWPN represents a significant step forward in adapting few-
shot learning techniques to the specific challenges of railway
infrastructure maintenance. Furthermore, Su et al [25] pro-
pose an innovative semi-supervised temporal meta-learning
method (SSTML) and a comprehensive deep learning frame-
work (SeMeF) that effectively utilize scarce labeled data in
conjunction with abundant unlabeled vibration data for wind
turbine bearing fault diagnosis. Their approach demonstrates
superior diagnostic accuracy compared to existing models,
thereby highlighting the potential of combining temporal
meta-learning with semi-supervised techniques in industrial
applications.

While the aforementioned models have undoubtedly
demonstrated considerable efficacy when applied to limited
training datasets or scenarios with sparse labeled samples,

there remain significant challenges in the field of few-shot
learning. One of the primary obstacles is the difficulty in
determining a precise and reliable decision boundary for
knowledge transfer. Furthermore, the inherent variability and
potential fluctuations in data distribution can potentially lead
to a substantial degradation in the performance of few-shot
learning methodologies.

For planetary gearboxes operating in real-world applica-
tions, substantial amounts of unlabeled data can be readily
acquired during the operational process. This abundance of
data presents a unique and promising opportunity to address
the current challenges associated with few-shot learning meth-
ods and, consequently, enhance their robustness and applicab-
ility in the field of fault diagnosis and prognosis. The judicious
and effective utilization of this unlabeled data, in conjunction
with the extremely limited labeled samples typically avail-
able, has the potential to significantly improve the perform-
ance, accuracy, and reliability of diagnostic and prognostic
models. Motivated by these considerations and the pressing
need for more efficient and adaptive learning paradigms in the
field of mechanical engineering, we propose a novel approach:
physics-aware dynamic spectral modeling integrated with
weakly supervised few-shot learning (PADSM-WSFL). This
innovative methodology, as illustrated in figure 1, is specific-
ally designed and dedicated to resolving the pervasive issue
of limited labeled samples by leveraging easily accessible
unlabeled data alongside advanced few-shot learning tech-
niques. In the proposed framework, the two adopted learning
paradigms—physics-aware dynamic spectral modeling and
weakly supervised few-shot learning—are not only comple-
mentary but also meticulously designed to capitalize on their
respective strengths, thereby creating a synergistic approach
to fault diagnosis in planetary gearboxes.

The primary contributions of this paper can be summarized
as follows:

1. Development of a novel graph construct module: An innov-
ative graph construct module is designed specifically for
extracting intrinsic features under extremely small sample
sizes. This module addresses the critical challenge of fea-
ture extraction in scenarios where labeled data is scarce,
thereby enhancing the overall efficacy of the learning
process.

2. Proposition of a physics-aware dynamic spectral modeling
approach: The study introduces a sophisticated pure tor-
sional lumped parametric model of a one-stage planetary
gear mechanism. In this model, only the torsional motion
of each component is incorporated into the modeling pro-
cess, allowing for a more focused and precise analysis of
the system’s dynamic properties. This approach enables a
comprehensive capture of the dynamic behavior of plan-
etary gearboxes, facilitating a more accurate and nuanced
understanding of their operational characteristics.

3. Integration of weakly supervised learning and few-shot
learning models: The research creatively combines weakly
supervised learning techniques with few-shot learning
models for planetary gearbox diagnosis. This innovative
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Figure 1. The proposed fault diagnosis framework: Integrating physical dynamic models and graph neural networks for extreme limited
labeled sample scenarios.

integration fully exploits the information contained in
unlabeled data while effectively performing fault diagnosis
with extremely limited labeled samples.

4. Leveraging the proposed physics-aware dynamic spectral
model and synthesizing simulated vibration data across
diverse fault conditions for model training. These physic-
ally consistent simulations significantly augment limited
labeled samples, mitigating deep neural network overfitting
while enhancing generalization capability and diagnostic
performance on novel data.

The paper is structured as follows: section 2 reviews per-
tinent literature on weakly supervised learning and graph
neural networks, which form the foundation of this research.
Section 3 elaborates on the proposed physics-aware dynamic
spectral modeling integrated with weakly supervised few-shot
learning. Section 4 presents and analyzes experimental results
from two fault diagnosis datasets. Finally, section 5 summar-
izes the key findings and concludes the paper.

2. Related work

In this section, the relevant literature of weakly supervised
learning and graph neural networks, which are critical com-
ponents of the research, will be revisited. Specifically, subsec-
tion 2.1 will focus onweakly supervised learning, exploring its
methodologies and advancements, while subsection 2.2 will
examine the developments and theoretical frameworks sur-
rounding graph neural networks.

2.1. Weakly supervised learning for fault diagnosis

Weakly supervised learning for fault diagnosis has garnered
considerable attention as a promising approach to address the
limitations inherent in scenarios where obtaining fully labeled
data is challenging or impractical. Within industrial scen-
arios, the acquisition of comprehensively labeled fault data
can be not only costly and time-intensive but also, in some

instances, impracticable due to safety considerations or the
infrequent occurrence of fault events. Consequently, research-
ers have been exploring innovative methods to overcome these
obstacles and enhance the efficacy of fault diagnosis systems.

Compared with weakly supervised learning, semi super-
vised learning combines a small amount of labeled data and a
large amount of unlabeled data, relying on structural inform-
ation in unlabeled data and supervised signals in labeled
data to improve performance. It is suitable for scenarios with
rich unlabeled data but high cost of high-quality labeling.
In summary, although both weakly supervised learning and
semi supervised learning aim to reduce reliance on large-scale
annotated data, the former focuses more on learning from
imperfect labels, while the latter focuses on effectively util-
izing rich unlabeled data resources.

In light of these challenges, several noteworthy studies have
emerged, each contributing to the advancement of weakly
supervised learning in fault diagnosis. For instance, Ruan
et al [26] introduce an enhanced non-local weakly supervised
fault diagnosis method that ingeniously incorporates few-shot
learning to augment training tasks and refine feature extrac-
tion in convolutional neural networks (CNNs). This innov-
ative approach has demonstrated significantly improved fault
diagnosis accuracy when compared to conventional methods,
particularly when applied to rolling bearing and bevel gear
datasets. Similarly, Guo et al [27] propose a cost-effective,
deep learning-based solution that leverages weakly super-
vised learning to directly estimate iron ore feed load from
ore pellet images. This method effectively addresses chal-
lenges associated with data annotation and image size, while
simultaneously exhibiting competitive performance for real-
time optimization of the grinding process. Further expand-
ing the field, Yan et al [28] present a novel digital twin-
assisted framework designed to tackle imbalanced fault dia-
gnosis. This approach successfully overcomes the limitations
of existing methods by generating high-fidelity simulated fault
data and employing a subdomain adaptive mechanism in con-
junction with margin-aware regularization. Consequently, the
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model’s diagnostic performance is substantially enhanced,
particularly in scenarios involving highly imbalanced data.
Qian and Li [29] introduce an innovative weakly supervised
oversampling method for fault diagnosis in industrial systems.
This approach enhances the selection of high-quality synthetic
samples through the application of graph semi-supervised
learning and a cost-sensitive neighborhood component ana-
lysis, resulting in improved performance and robustness when
applied to highly imbalanced datasets, outperforming existing
approaches. Liu et al [30] propose an optimal sample selection
strategy for weakly supervised visual tracking that enhances
model performance by meticulously assessing the reliability
of samples through score maps and judiciously replacing unre-
liable pseudo-labels with reliable ground truth.

Despite the notable domain-specific successes achieved by
weakly supervised learning methods in fault diagnosis, it is
important to acknowledge their limitations. These approaches
often necessitate the incorporation of a priori information,
which can lead to increased computational demands and
potential constraints on model generalization. Furthermore,
the diagnostic performance of weakly supervised approaches
generally falls short of the benchmarks set by fully super-
vised models. Notwithstanding these challenges, the field con-
tinues to evolve rapidly, and ongoing research is expected to
yield more robust and broadly applicable methodologies. As
advancements are made in addressing current limitations, it
is anticipated that weakly supervised learning will play an
increasingly significant role in fault diagnosis applications,
particularly in scenarios where the acquisition of fully labeled
data remains challenging or impractical.

2.2. Graph neural networks

The application of graph neural networks (GNNs) in fault dia-
gnosis is receiving increasing attention, as they are capable
of handling non-Euclidean data and intricate relationships,
particularly when complete data labeling is challenging. In
industry, building detailed fault databases is both expensive
and time-consuming. GNNs provide new avenues for fault pre-
diction and learning from limited annotations by effectively
spreading and aggregating node features, boosting the per-
formance of diagnostic systems. Consequently, both academia
and industry are actively engaged in GNNsmodel innovations,
propelling fault diagnosis technology forward.

In view of the aforementioned obstacles, a number of prom-
inent research efforts have surfaced, collectively driving for-
ward the progress of GNNs in the domain of fault diagnosis.
Specifically, Jiao et al [31] introduce an ensemble of simpli-
fied graph wavelet neural networks (SGWNN) for enhanced
fault diagnosis in planetary gearboxes, addressing the chal-
lenge of scarcity of faulty samples in real-world scenarios.
By utilizing diverse wavelet bases for feature extraction and a
learnable weighting ensemble strategy, their method signific-
antly outperforms conventional CNNs and other GNNs vari-
ants in terms of both accuracy and robustness. In a similar
vein, Xu et al [32] present a novel graph-guided collaborative

convolutional neural network (GGCN) designed for enhanced
fault diagnosis in electromechanical systems. This approach
features a graph reasoning fusion module that effectively
explores both modality-specific and shared features across
multi-source signals. Consequently, it surpasses seven state-
of-the-art (SOTA) methods, especially in noisy environments.
Furthermore, Chen et al [33] introduce a Semi-supervised
self-correcting graph neural network (SSGNN) for fault dia-
gnosis in rotating machinery. Their method constructs a
graph-structured representation from vibrational signals, util-
izes an improved state transform algorithm for state propaga-
tion, and applies an alternative learning method based on the
expectation-maximization (EM) algorithm to optimize feature
extraction and graph structure. This approach demonstrates
superior accuracy and convergence speed over existing meth-
ods. Additionally, Yu et al [34] propose a graph-weighted
reinforcement network (GWRNet) that accurately diagnoses
faults in rotating machines under conditions of small sample
sizes and strong noise. By constructing an adjacency matrix
for pre-classification and dynamically enhancing the node fea-
ture aggregation strategy to suppress noise, the effectiveness
of their method is verified using datasets from the drivetrain
diagnostics simulator (DDS) test rig and wind turbine gear-
boxes. Yin et al [35] develop a multiscale graph convolutional
network (MS-GCN) for enhanced fault diagnosis in rolling
bearings. This approach features a multiscale feature extrac-
tion module for comprehensive discovery of signal regular-
ities, a multiscale graph iteration module for retaining local
features while mining global information, and a mutual fusion
module based on Bayesian methods. Collectively, these innov-
ations significantly improve diagnostic accuracy over current
SOTA methods.

GNNs have demonstrated remarkable domain-specific suc-
cesses in various applications, yet they also present promin-
ent limitations. One significant challenge is the high compu-
tational demand associated with GNNs, as they often require
substantial processing power and memory to handle large-
scale graph data. Additionally, the performance of GNNs can
be highly sensitive to the quality and structure of the input
graph, making them susceptible to issues arising from noisy or
incomplete data. Despite these challenges, the field of GNNs
is rapidly advancing, with ongoing research focused on devel-
oping more efficient algorithms and robust architectures. As
improvements are made in these areas, GNNs are expec-
ted to become increasingly integral to applications requir-
ing complex relational data analysis, particularly in scenarios
where traditional neural network models struggle to capture
the underlying graph structures.

3. Semi-supervised consistency models

In this section, the research present a comprehensive illus-
tration of the proposed PADSM-WSFL framework. The
PADSM-WSFL architecture is composed of two prin-
cipal sub-architectures, each playing a crucial role in the
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Figure 2. (a) The dynamic model of the planetary gearbox transmission (b) Schematic of planetary gear sets under pure torsion, with mesh
interactions represented by linear spring-damper systems.

overall diagnostic process: Physics-Aware Dynamic Spectral
Modeling (PADSM), see discussed in section 3.1, and Few-
Shot Signal Representation Learning (FSSRL), detailed in
section 3.2. Initially, the PADSM framework is engineered
to generate highly accurate synthesized vibration signals by
meticulously modeling the dynamic behavior of a Planetary
Gearbox (PGB). This physics-based approach ensures that the
generated signals closely mimic real-world vibration patterns,
including various fault conditions. Ultimately, this approach
enables the effective and efficient fault diagnosis of the PGB.
By leveraging both physical modeling principles and advanced
weakly supervised learning techniques, the PADSM-WSFL
framework achieves robust diagnostic performance, even in
scenarios with limited real-world fault data.

3.1. Physics-aware dynamic spectral modeling

In order to achieve highly accurate synthesized vibration of
various types of failures, particularly the dynamic spectral
characteristics of Planetary Gearboxes (PGBs), this research
employs physics-aware dynamic spectral modeling to compre-
hensively capture the dynamic behavior of PGBs. The model
utilized in this study is a sophisticated pure torsional lumped
parametric model of a one-stage planetary gear mechanism,
wherein only the torsional motion of each component is incor-
porated into the modeling process. This approach allows for a
more focused and precise analysis of the system’s dynamic
properties.

The system under investigation comprises one Sun gear (s),
one ring gear (r), one carrier (c), and N planet gears (p), col-
lectively resulting in (3+N) degrees of freedom, as illustrated
in figure 2. To accurately represent the interactions between
components, the meshes of Sun-planet and ring-planet pairs

are modeled as linear springs and dampers, denoted by khn
and chn respectively, where h= s or r, and n= 1,2, . . . ,N. It
is important to note that, for the purposes of this study, non-
linear factors of the gear mesh, such as backlash and trans-
fer errors, have been intentionally omitted from the dynamic
modeling procedure to maintain model simplicity and focus
on the primary dynamics. Furthermore, the torsional stiffness
and damping of individual parts are represented by khu and chu
respectively, where u= s,r,c. These parameters play a crucial
role in determining the system’s overall dynamic response and
are essential for accurate modeling. By meticulously formu-
lating the differential equations of rigid body motion for each
component, the comprehensive governing equation of the sys-
tem can be derived. This equation encapsulates the complex
interactions and dynamics of the entire planetary gearbox sys-
tem, providing a solid foundation for further analysis and sim-
ulation of various failure modes and operating conditions.

Carrier :

(
Ic
r2c

+
N∑

n=1

mn

)
üc+ ccuu̇c

+ kcuuc− cosα

[
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+
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=
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)
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+
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Sun :
(
Is
r2s

)
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+
N∑
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csnδ̇sn+
N∑

n=1

ksnδsn =
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n-th Planet :
(
In
r2n

)
ün− crnδ̇rn− krnδrn

+ csnδ̇sn+ ksnδsn = 0 (4)

where uh represents the torsional displacement of the corres-
ponding components, serving as a crucial variable in describ-
ing the rotational motion of each gear element. The mass and
moment of inertia, denoted by mh and Ih respectively, are fun-
damental properties that influence the dynamic response of
the system. Furthermore, rh signifies the radius of the base
circle, which is a critical geometric parameter in gear design
and analysis. The gear pressure angle, represented byα, plays
a significant role in determining the force transmission char-
acteristics between mating gears. Additionally, Th denotes the
applied torque, which is the primary driving force in the sys-
tem. The relative displacements, δsn = us+ un− uc and δrn =
ur− un− uc cosα, are of particular importance as they pro-
ject onto the action line of the Sun-planet and ring-planet
pairs, respectively, thereby capturing the intricate interactions
between these components.

The dynamic behavior of the gear mesh stiffness is a com-
plex phenomenon that warrants careful consideration. Due to
the cyclical engagement pattern alternating between single
and double tooth contacts, coupled with the continuous alter-
ation of the contact location, the mesh stiffness exhibits tem-
poral fluctuations. This time-varying nature of the mesh stiff-
ness significantly influences the overall system dynamics and
is crucial for accurate modeling. In analyzing the flexure of
a straight-toothed gear tooth, it is instructive to conceptual-
ize it as analogous to a non-homogeneous cantilever beam.
The stiffness characteristics of such a system can be effect-
ively gauged through the application of the potential energy
approach. This method allows for a comprehensive considera-
tion of various deformation modes, including bending, shear,
compression, and contact-induced deformations. By incorpor-
ating these effects, the aggregate effective stiffness for the gear
mesh can be determined with greater precision. This enhanced
accuracy is achieved by utilizing the following equation for
computation

kt =
2∑

i=1

(1/(1/kh,i+ 1/kb1,i+ 1/ks1,i+ 1/ka1,i

+1/kb2,i+ 1/ks2,i+ 1/ka2,i)) (5)

where the indices i = 1,2 represent the specific gear pair
involved in the meshing process. The parameters kh, kb, ks and
ka are used to denote, respectively, the Hertzian contact stiff-
ness, the bending stiffness, the shearing stiffness, and the axial
compressive stiffness of a pair of mating teeth. These stiffness

values are determined as follows:

1
kh

=
4
(
1− v2

)

πEL
(6)

1
kb

=

ˆ d

0

(xcosα1 − hsinα1)
2

EIx
dx (7)

1
ks

=

ˆ d

0

1.2cos2α1

GAx
dx (8)

1
ka

=

ˆ d

0

sin2α1

EAx
dx. (9)

where the elastic modulus (E), shear modulus (G), and
Poisson’s ratio (v) are fundamental material properties that
govern the tooth’s response to applied loads. The tooth width
(L) is a critical geometric parameter that influences the load
distribution along the tooth face. The area moment of inertia
(Ix) and the cross-sectional area (Ax) are essential for calcu-
lating the tooth’s resistance to bending and axial deformation,
respectively. The angle α1, defined as the angle between the
action line and the line perpendicular to the central line of the
tooth, along with the distance x from the point of applied force
to the tooth root, are crucial geometric parameters that affect
the stress distribution within the tooth.

3.2. Few-shot signal representation learning

In the field of real-world industrial applications, the acquis-
ition of labeled samples often presents a significant finan-
cial burden. Moreover, due to various constraints inherent
in data collection processes, such as operating conditions or
equipment limitations, researchers and practitioners are fre-
quently compelled to rely on simulated samples generated
by physics-based dynamic models as proxies for real-world
labeled data. These circumstances give rise to a challenging
scenario wherein one must contend with two distinct data-
sets: firstly, a datasetDu = {Xi}Ni=1, which encompasses a sub-
stantial quantity of unannotated data samples, and secondly,
a dataset Dl = {X̂i,Yi}Mi=1, which contains a limited number
of labeled simulated samples. Within this framework, Xi and
X̂i ∈RW×1 represent data samples with dimensions ofW × 1,
whereW denotes the number of features. The variable Yi cor-
responds to the label associated with the simulated data sample
X̂i. It is important to note that N and M represent the number
of data samples in Du and Dl respectively, with the critical
distinction that M is significantly smaller than N, reflecting
the scarcity of labeled data in comparison to the abundance
of unlabeled samples.

To address the challenges posed by this data imbalance,
researchers have developed advanced machine learning tech-
niques, among which the dynamic graph attention network
(DGAT) [36] stands out as a particularly promising approach.
The DGAT is a specialized variant of graph neural networks
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that incorporates a sophisticated attention mechanism. This
network introduces a dynamic attention mechanism through
judicious modifications to the original graph attention network
(GAT) architecture. The operational principle of the DGAT
can be elucidated as follows: Initially, a shared linear trans-
formation, parameterized by the weight matrix W, is applied
uniformly to all nodes in the graph. Subsequently, a shared
attention mechanism, denoted as F, is executed on these trans-
formed nodes. This process culminates in the calculation of
dynamic attention scores, which can be formally expressed
through the mathematical formula below.

eij = F ·LeakyReLU(W · [hi‖hj]) (10)

where hi and hj denotes the node feature of node i and node j,
respectively, || indicates a concatenation operation, andW and
F are updated during iterations of the DGAT layer.

Based on the attention scores, the normalized scores αij
can be calculated, and the final updated node setH′ can be
obtained. This process can be mathematically expressed as:

αij =
exp(eij)∑

k∈N (i) exp(eik)
(11)

h ′
i = σ

⎛

⎝
∑

j∈N (i)

αijWhj

⎞

⎠ (12)

whereN (i) represents the set of neighboring nodes of node i,
σ denotes a non-linear activation function.

For few-shot signal representation learning, two tasks are
considered: a target task Tt and a pretext task Pt. The tar-
get task Tt involves fault diagnosis, while the pretext task Pt
focuses on signal transformation classification to learn inher-
ent features from a limited amount of labeled data. To establish
the pretext task, it is necessary to modify the input of the ori-
ginal graph neural network, transforming it from a traditional
semi-supervised model to a weakly supervised model suitable
for few-shot learning. Consequently, the process of graph con-
struction transitions from equations (13) to (14):

G= gbase (Hl,Hu) (13)

G ′ = gimproved (Hl) (14)

where g represents the graph construction process, Hl and Hu

denote labeled and unlabeled samples, respectively. However,
it is important to note that traditional training processes of
graph neural networks often struggle to effectively differenti-
ate faults when the sample size is extremely small. Therefore,
it becomes necessary to improve graph construction strategies
by incorporating the concept of few-shot matching pairs.
Through effective structural design, GNN can effectively util-
ize all samples appearing in the graph and integrate informa-
tion between similar nodes through edge connections, thereby
extracting more representative node features.

In this specific approach, when the number of samples is
extremely limited, each training sample is considered as a

Figure 3. Graph construction process for extremely small sample
sizes.

target node, and a graph is constructed with all other train-
ing samples. This process is then cyclically implemented. The
constructed graphs are subsequently inputted into our DGAT
network for feature extraction and classification. Similarly,
during the prediction phase, the same strategy is employed,
wherein a supporting group containing a small number of
labeled samples, along with the test samples, is used to con-
struct graphs and make predictions. In a K-way classifica-
tion task, where K distinct types exist for classification, the
graph construction methodology remains consistent during
both training and testing phases. The initial procedure entails
the creation of a support set S

S= {T1,T2,T3 . . . ,Tk} (15)

Ti = {si1,si2,si3 . . . ,sin} (16)

where Tk represents that the support signal sample belongs to
the kth type, and sin denotes the nth sample in type Ti. Given an
input test signal sample X̃t, the dataset containing K different
types samples is defined as a few-shot testing set, as shown
below

St =
{
T1,T2,T3. . .,Tk, X̃t

}
(17)

the original loss function has been adjusted, and a function
tailored to the aforementionedmethod has been proposed. This
function utilizes the predicted label set Z and the label set Y,
and is expressed as equation (18)

Loss=−
T∑

t

y(t)n ln
(
z(t)n
)

(18)

where n is the specified location of the unknown sample that
needs to be predicted, y(t)n is the t-th value of the label yn, and
z(t)n is the tth value of the predicted label zn. The constructing
process is illustrated in figure 3.

As the number of available samples increases, it becomes
feasible to employ the traditional graph construction method.
This approach involves constructing a single graph with all
labeled samples. Consequently, the loss function is updated as
below

Loss=−1
I

I∑

i

T∑

t

y(t)i ln
(
z(t)i
)

(19)
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Figure 4. The proposed PADSM-WSFL architecture for planetary gearbox diagnosis.

where I is the label number, T is the number of types, y(t)i is the
tth value of the label yi, and z

(t)
i is the tth value of the predicted

label zi.

3.3. The proposed architecture of PADSM-WSFL

As discussed above, the proposed architecture PADSM-WSFL
can be designed based on physics-aware dynamic spectral
modeling and few-shot signal representation learning, thereby
presenting a new approach to fault diagnosis in planetary
gearbox systems. The overarching workflow of this model is
meticulously illustrated in figure 4, while the comprehensive
algorithm is elaborated in Algorithm 1.

The framework operates in two distinct, yet interconnected
stages. In the initial stage, the neural network is subjected to
training on a pretext task to extract and learn inherent features
from a limited set of labeled simulation signals. Subsequently,
the acquired parameters are transferred to an identical network
architecture for fault diagnosis using unlabeled real samples,
thus bridging the gap between simulated and real-world data.
To initiate the first stage, graphs are constructed for all avail-
able labeled simulated fault signals, albeit limited in number,
by employing the K-nearest neighbors (KNN) algorithm [37].
The specific criteria for graph construction are meticulously
described in section 3.2, ensuring a robust andmeaningful rep-
resentation of the signal relationships. These carefully crafted
graph structures serve as the bedrock for training the neural
network in the fault diagnosis task.

The training process adheres to the tenets of supervised
learning, wherein a signal transformation classification neural
network, represented as fp(θp), is trained on the pretext task
to distinguish various fault types within the simulation sig-
nals. Here, θp symbolizes the trainable parameters of the
neural network. These parameters are iteratively refined by

minimizing the loss function Ls, which is formally defined in
equations (18) and (19).

In this research, a sophisticated GNN is developed to per-
form feature extraction and classification tasks. GNNs are
renowned for their ability to aggregate global feature informa-
tion and exhibit heightened sensitivity to inter-sample similar-
ities based on the underlying graph structure. The proposed
neural network architecture incorporates two DGAT layers,
each followed by two Batch-Norm (BN) layers. While the
DGAT layers are responsible for learning node feature repres-
entations, the BN layers serve to accelerate the training pro-
cess and bolster themodel’s generalization capabilities. To fur-
ther enhance the stability and efficacy of the attention mech-
anism, a multi-headed attention approach is implemented.
This enhancement augments the model’s feature extraction
capabilities, with M denoting the number of attention heads
employed for multiple attention aggregation operations. The
final updated output of each layer is mathematically expressed
as follows

hi = σ

⎛

⎝ 1
M

M∑

m=1

∑

j∈N(i)

αijej

⎞

⎠ (20)

where σ represents the Sigmoid activation function, M is set
to 4 in this study, N(i) denotes the set of all nodes adjacent to
node i, αij quantifies the attention weight of node j to node i, ej
is the linear transformation of the lower layer embedding, and
hi represents the node vector updated by node i after inform-
ation aggregation. To mitigate overfitting, a fully connected
(FC) layer followed by a dropout layer is incorporated into the
architecture. The network culminates with an additional FC
layer to yield the ultimate output.

The second stage of the framework involves transferring the
learned parameters to another identical network, denoted as
ft(θt), for initialization through weight sharing. Subsequently,
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Algorithm 1. PADSM-WSFL Framework.

1: procedure LearnInherentFeatures(D, fp(·), gimproved(·))
2: Input: Synthesized dataset: D= {X̂i}Ni=1

3: Create dataset for Pt: Dp = {X̂i,Yi}Ni=1 via transformation
4: Build graph: G ′ = gimproved(Dp) based on the number of i
5: Initialize the parameter θp← fp(θ)
6: while not converged do
7: Compute output: zti = fp

(
X̂i | θp

)

8: Calculate loss: L=−
∑T

t y
(t)
n ln

(
z(t)n

)
or

L=− 1
I

∑I
i

∑T
t y

(t)
i ln

(
z(t)i

)

9: Update θp by back propagation
10: end while
11: Output: Optimized parameter θp for Pt
12: end procedure
13: procedure TestOnRealWorldData(Dr, θp, FC(·))
14: Input: Real dataset: Dr = {Xi}Ni=1
15: Initialize twin network: θt← θp (weight-sharing)
16: Compute label value: {(Pi,k)nk=1}Ni=1 = FC({h ′

i }Ni=1)
17: Make predictions for Dr: Pi =max({Pi,k}nk=1)

18: Calculate accuracy: acc=
∑C

i=1 TPi∑C
i=1(

∑C
j=1Mij)+

∑C
i=1 TPi

19: return Accuracy and Predictions
20: end procedure

the performance of this twin neural network is rigorously eval-
uated using real experimental data, adhering to the funda-
mental training principles of graph neural networks. During
this phase, the graph construction method for real data is
dynamically adjusted based on previously determined train-
ing strategies, ensuring optimal adaptability to real-world
scenarios.

To quantitatively assess the model’s performance, accuracy
is employed as the primary metric, defined as:

Accuracy=
∑C

i=1TPi
∑C

i=1

(∑C
j=1Mij

)
+
∑C

i=1TPi
(21)

whereC represents the total number of categories, TPi denotes
the number of samples from the true class i correctly predicted
as class i, and Mij signifies the number of samples from the
true class i erroneously predicted as class j. Thus, accuracy
is computed as the ratio of correctly predicted samples to the
total number of predicted samples, providing a comprehensive
measure of the model’s diagnostic capabilities.

4. Experimental results and comparative analysis

This section systematically evaluates the PADSM-WSFL
framework through two case studies employing drivetrain
prognostics simulator (DPS) and DDS platforms, detailed
in sections 4.1 and 4.2. And demonstrated the experi-
mental details and process of synthesizing samples using
a physical perception dynamic spectral model, as detailed
in section 4.1.2. And display the final experimental results
through accuracy, precision, F1 score, and recall. In terms of
visualization, T-SNE diagrams, confusion matrices, and Roc

curves were used to express the stability and reliability of the
PADSM-WSFL framework.

4.1. Case study I

4.1.1. Experimental apparatus and data acquisition. The
experimental apparatus employed in this investigation is the
DPS, manufactured by SpectraQuest Inc. as illustrated in
figure 5. This sophisticated system comprises several inter-
connected components, which are described in detail as fol-
lows: a variable speed drive motor, a planetary gearbox sys-
tem, a two-stage parallel gearbox system, resistance-load gear
boxes coupled to a resistance-load inducing electric load
motor, and an electric control unit that governs the entire
set-up. The physical parameters of the planetary set are lis-
ted in table 1. The primary focus of this research is direc-
ted towards the planetary gearbox system, which operates
using spur gears, and the two-stage parallel gearbox system,
which utilizes helical gears. It is worth noting that the data-
set for case study I encompasses fault samples from four dis-
tinct categories: (1) Broken, (2) Chipped, (3) Crack, and (4)
Normal.

In this experimental protocol, the signal sampled from the
planetary gearbox transmission system was carefully selected
for analysis. Horizontal position signal data is acquired at a
sampling frequency of 24 kHz, under controlled conditions
where the input speed was maintained at 20 Hz. These para-
meters are chosen to ensure consistency and reproducibility
of the results. Furthermore, based on the physical paramet-
ers of the test rig, a comprehensive model of the gearbox is
developed, effectively creating a dynamic model of this sys-
tem, as shown in figure 2. This model is subsequently utilized
to simulate the vibration response of each component under
various input speeds and external loads, thereby providing a
more holistic understanding of the system’s behavior. The sim-
ulation signal is sampled at a frequency of 25 kHz, slightly
higher than the experimental sampling rate to ensure adequate
resolution. To facilitate analysis, the original signal segmented
into discrete samples, each with a length of 2048 data points.
This segmentation process allows for more manageable data
handling and enables the application of various signal pro-
cessing techniques.

The proposed algorithms are implemented in Python 3.9
and executed on a GeForce GTX 3090 GPU. The frame-
work consists of two stages: first, training on a small set
of labeled simulation data to learn vibration signal charac-
teristics, and second, testing on real data. To avoid experi-
mental coincidence, 8 replicate experiments are executed for
all methods. The network structure and hyperparameters are
set to the same for all GNNs. The network is trained for
200 epochs using an Adam optimizer with a weight decay
of 0.0005, an initial learning rate of 0.01 and decays to 0.1
in 100, 150 iterations respectively. The k value is set to 3.
For testing, 120 samples are randomly selected from each
of the 3000 samples per category, totaling 480 test samples.
This approach aims to effectively diagnose faults with limited
training data while ensuring robust performance on real-world
samples.
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Figure 5. Illustration of the drivetrain prognostics simulation (DPS).

Table 1. Physical parameters of the planetary gear set in DPS.

Parameters Sun Planet (4) Ring Carrier

Number of teeth 28 36 100 —
Module [mm] 1 1 1 —
Pressure angle [◦] 20 20 20 —
Face width [mm] 10 10 10 —
Young’s modulus [Pa] 2.1× 1011 2.1× 1011 2.1× 1011 —
Poisson’s ratio 0.3 0.3 0.3 —
Mass [kg] — — 9.86× 10−2 —
Moment of inertia [kg·m2] 2.41× 10−6 1.60× 10−5 9.20× 10−3 4.99× 104

Base circle [mm] 13.2 16.9 47.0 —
Torsional stiffness [N m−1] 0 — 1× 109 0
Torsional damping [N·sm−1] 0 — 1× 103 0

4.1.2. Synthesized sample using physics-aware dynamic
spectral model. When considering the impact of local faults
on gear performance, it is important to note that such defects
typically result in a decrease in the stiffness of the affected
tooth. The nature and extent of this stiffness reduction vary
depending on the specific failure mode. For instance, a root
crack fundamentally alters the tooth’s cross-sectional area,
leading to a significant reduction in both bending and shear-
ing stiffness. In the case of a chipped tooth, the change can be
modeled as a reduction in the tooth surface area, which primar-
ily affects the Hertzian contact stiffness. Pitting, another com-
mon form of gear damage, can be represented in the model
by a shortened contact line between mating teeth. The most
severe failure mode, a broken tooth, results in a complete loss
of stiffness in the affected region.

To improve the accuracy of predicting planetary gearbox
behavior, an LSTM network [14] and the generalized Welch
method [38] are used to estimate power spectral density (PSD).
The LSTM network is initially trained to correct errors in the
dynamic model. The simulated vibrations of various compon-
ents serve as input data, while the measured signals from the

test rig are used as output sample labels. Notably, the train-
ing is conducted using the discrete Fourier transform (DFT)
sequences of the samples rather than the original time-domain
waveforms, which allows for more efficient processing of
frequency-domain characteristics. Following the successful
training of the LSTM network, it becomes possible to estim-
ate the spectral density of unknown conditions using Welch’s
method. This approach involves averaging the modified peri-
odograms of windowed overlapping segments. The mathem-
atical expression for this process is provided in the subsequent
equations, offering a rigorous framework for spectral analysis
of planetary gearbox vibrations

P̂i
PER

(
ejω
)
=

1
MU

∣∣∣∣∣

M−1∑

n=0

xiN (n)w(n)e−jωn

∣∣∣∣∣

2

(22)

P̂i
PER

(
ejω
)
=

1
U

∣∣∣XiN
(
ejω
)
∗W

(
ejω
)∣∣∣

2
(23)

P̃PER
(
ejω
)
=

1
L

L∑

i=1

P̂iPER
(
ejω
)
. (24)
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The term P̂i
PER(e

jω) represents the discrete time Fourier
transform (DTFT) of the windowed i− th segment of length
M. This transformation is fundamental in converting time-
domain data into the frequency domain, thereby enabling
detailed spectral analysis. It is worth noting that this DTFT
can also be computed through the convolution of the DTFT
sequences of the signal with the window function, providing
an alternative computational approach that may be advantage-
ous in certain scenarios. The energy of the window function,
denoted as U= (1/M) ·

∑M−1
n=1 w

2(n), plays a critical role in
the analysis process. This parameter is essential for normal-
izing the spectrum, thereby ensuring an unbiased estimation
of the PSD. The normalization process is crucial in maintain-
ing the integrity of the spectral analysis, as it compensates
for the energy introduced by the windowing process. A key
aspect of this methodology is the averaging of multiple seg-
ment estimations, represented by P̃PER. This average, taken
over L segments, serves a vital purpose in reducing the vari-
ance of the estimation. By combining multiple estimates, the
method effectivelymitigates the impact of randomfluctuations
and noise, thereby enhancing the overall reliability and accur-
acy of the spectral analysis. This improvement in estimation
performance is particularly valuable when dealing with com-
plex systems such as planetary gearboxes, where subtle spec-
tral features may hold significant diagnostic information.

The robustness and generalization capability of the trained
network are ensured through a comprehensive data acquisi-
tion strategy. Both simulated and measured signals are collec-
ted under a diverse range of operating conditions and failure
modes. This approach is crucial in capturing the full spectrum
of potential gear behaviors and fault characteristics. By expos-
ing the network to this wide array of scenarios during train-
ing, its ability to generalize to new, unseen conditions is signi-
ficantly enhanced. In the training process, labels correspond-
ing to the simulated fault types are assigned to the simulated
signals. This labeling is a critical step in supervised learning,
providing the network with the necessary context to associate
specific signal characteristics with particular fault conditions.
The labeled, simulated data, represented as {h(sim,label)

i }Ni=1 ,
serves as the primary input to the network during the training
phase. Following the training process, the network’s generaliz-
ation capabilities are put to the test. The trained network para-
meters are applied to the same network architecture, but this
time using real, unlabeled data {h(real,unlabel)i }Ni=1 as input. This
step is crucial in assessing the network’s ability to transfer its
learned knowledge to real-world scenarios

{
(Pi,k)

n
k=1

}N
i=1 = FC

(
{h ′

i }
N
i=1

)
(25)

Pi =max
(
{Pi,k}nk=1

)
(26)

where n represents the total number of fault types under con-
sideration, while k denotes a specific fault number within this
set. The outputPi,k is a critical parameter, indicating the degree
of similarity between the input signal and the kth fault type.
This similarity measure is normalized to fall within the range

Figure 6. Signal comparison analysis samples for Case Study I: (a)
four types of synthetic vibration signals with their corresponding
meshing frequencies, and (b) experimental fault vibration signals
with their corresponding meshing frequencies.

Figure 7. Signal comparison analysis samples for Case Study II: (a)
four types of synthetic vibration signals with their corresponding
meshing frequencies, and (b) experimental fault vibration signals
with their corresponding meshing frequencies.

of 0 to 1, providing an intuitive scale for interpretation. The
interpretation of these similarity values is straightforward yet
powerful: a larger value of Pi,k suggests a higher likelihood
that the input signal corresponds to the fault category repres-
ented by k. The fault category with the highest similarity value,
denoted by Pi, is then considered the most probable classific-
ation for the input signal.

Based on the comprehensive analysis presented above, the
signal comparison analysis samples from Case Study I and
Case Study II are illustrated in figures 6 and 7, respectively.
These figures provide valuable insights into the effective-
ness of our proposed methodology. In figure 6, it is evident
that the principal frequencies, such as the meshing frequency
with harmonics fm, 2fm, 3fm, and 4fm, can be clearly identi-
fied in the synthesized signals generated through the physics-
aware spectral model. Notably, these meshing frequencies in
the experimental signals closely align with those observed in
the synthesized signals. This strong correlation demonstrates
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Table 2. Details of the used DGAT

Layer Input Channels Output Channels Params

GATv2Conv1 feature 1024 heads = 4
Linear1 1024 1024 —
BatchNorm1 1024 1024 —
GATv2Conv2 1024 1024 heads = 4
Linear2 1024 1024 —
BatchNorm2 1024 1024 —

FCL1 1024 512 Act: ReLU,
inplace = True

Dropout1 512 512 p= 0.2
FCL2 512 out_channel —

the high efficacy of the dynamic model in creating synthes-
ized signals that accurately represent real-world conditions.
Consequently, this validates the model’s suitability for further
training the proposed few-shot learning method for planetary
gearbox diagnosis.

Similarly, figure 7 exhibits comparable results, wherein the
meshing frequency and its harmonics, specifically fm, 2fm, 3fm,
4fm, 5fm, and 6fm, can also be distinctly identified in the syn-
thesized signals. This consistency across both case studies fur-
ther reinforces the robustness and reliability of our proposed
approach. These findings collectively underscore the signific-
ant potential of the proposed methodology in accurately simu-
lating and analyzing complex planetary gearbox systems, thus
paving theway formore efficient and effective diagnostic tech-
niques in industrial applications.

4.1.3. Planetary gearbox diagnosis results and comparative
analysis. To rigorously evaluate and demonstrate the effic-
acy and superiority of the proposed PADSM-WSFL frame-
work, a comprehensive validation process is conducted using
measured datasets under controlled conditions. For a thor-
ough comparative analysis, several current SOTA methods
are employed as benchmarks. These methods include Few-
shot learning based on WDCNN [39], referred to as FS-1,
Few-shot learning based on 1DCNN [40], denoted as FS-2,
SSGCDBN [41], GCN [42], GAT [43], GNNmethod based on
the Granger causality test (GCTGNN) [44], TabPFN [45], and
HyperFast [46]. These methodologies are selected due to their
relevance and established performance in related domains,
thereby providing a robust foundation for comparative ana-
lysis. Furthermore, it is noteworthy that the proposed DGAT
component. TabPFN and HyperFast directly load existing pre
trained model weights to generate adapted network structures
and parameters without the need for additional training and
tuning. The specific architectural details and hyperparamet-
ers of the employed DGAT are meticulously documented in
table 2, facilitating reproducibility and further analysis by the
scientific community.

The diagnostic results obtained from the DPS datasets
are comprehensively presented in table 3 and illustrated in
figure 8(a). In this study, the proposed method, PADSM-
WSFL, is compared with established supervised learning

models, such as FS-1 and FS-2. Upon careful analysis, it
becomes evident that PADSM-WSFL demonstrates a marked
improvement in performance compared to these abovemodels.
Specifically, when themodels are trained using a single sample
for each faulty class, PADSM-WSFL achieves a noteworthy
accuracy of 72.23%. This performance significantly surpasses
that of FS-1 and FS-2 by 30.75% and 42.13%, respectively.
Furthermore, as the number of training samples increases to
15, PADSM-WSFL exhibits a remarkable diagnostic accur-
acy of 94.58%, whereas the supervised methods struggle to
exceed 75% accuracy. A comprehensive comparison results
in other metrics is also recorded in table 4. The values high-
lighted in bold represent outstanding performance indicators
obtained through different methods under experimental con-
ditions.

In addition to supervised learning models, this study also
incorporates a comparative analysis with semi-supervised
learning methods, including SSGCDBN, GCN, GAT, DGAT
and GCTGNN. These models are characterized by their ability
to be trained with a limited amount of labeled data supplemen-
ted by a substantial volume of unlabeled data, thereby enabling
them to extract inherent features from the unlabeled data-
set. Leveraging initialization weights derived from auxiliary
tasks, these semi-supervised models demonstrate superior per-
formance compared to traditional supervised networks when
confronted with limited training samples. Nevertheless, the
proposed PADSM-WSFL method consistently outperforms
these aforementioned models. Notably, when the number of
training samples per class is increased to three, PADSM-
WSFL continues to exhibit superior performance, surpassing
SSGCDBN, GCN, GAT, DGAT and GCTGNN by 48.48%,
55.21%, 54.64%, 59.63% and 60.83% in terms of accuracy,
respectively. These experimental results provide compelling
evidence that the implementation of PADSM-WSFL networks
can substantially enhance the accuracy of fault diagnosis in
scenarios where only a limited number of training samples
are available. When utilizing 10 training samples, PADSM-
WSFL demonstrates a remarkable improvement, outperform-
ing DGAT and GCTGNN by 12.8% and 13.62%, respectively.
This performance disparity reaches its zenith at 15 training
samples, where PADSM-WSFL achieves an impressive accur-
acy of 94.58%, while GCN and DGAT attain 86.04% and
86.93%, respectively.

A comprehensive comparative analysis is conducted to
validate the effectiveness of the proposed approach against
well-established few-shot learning methodologies, particu-
larly TabPFN and HyperFast, whereby the performance met-
rics of all approaches are meticulously documented in table 3
and systematically visualized in figure 8(a). Through rigorous
empirical evaluation, it has been demonstrated that the pro-
posed PADSM-WSFL method not only matches but consist-
ently and significantly outperforms these SOTA benchmark
models across diverse testing scenarios. Of particular signi-
ficance is the observation that when the training dataset is
expanded to incorporate three samples per class, PADSM-
WSFLmaintained its superior diagnostic capabilities, exceed-
ing both TabPFN and HyperFast by substantial margins of
67.22% and 58.75% in classification accuracy, respectively.
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Figure 8. Accuracy comparison: (a) Case study I, (b) Case study II. The height of each bar represents the number of training samples
(1–15) available for each distinct fault category, differentiated by color.

Table 3. The comparison results in accuracy (%) on case study I.

Method 1 3 5 10 15

FS-1 30.75±0.70 40.79±0.64 48.09±4.13 53.70±0.52 58.42±0.64
FS-2 42.13±3.09 46.47±3.02 51.87±4.31 64.47±4.32 74.27±8.42
SSGCDBN 43.74±3.85 48.48±4.16 72.37±4.33 72.91±1.89 86.91±4.56
GCN 50.76±7.12 55.21±4.44 61.25±0.31 78.12±0.48 86.04±2.20
GAT 47.98±0.64 54.64±3.65 62.77±2.10 63.75±2.50 76.64±4.00
DGAT 50.41±5.53 59.63±3.33 74.94±1.86 78.52±1.42 86.93±4.25
GCTGNN 52.29±3.61 60.83±2.19 71.48±6.14 77.70±1.16 85.83±4.66
HyperFast 42.29±5.35 58.75±5.70 68.96±5.77 86.32±2.78 92.02±0.37
TabPFN 61.67±2.73 67.22±4.82 77.92±5.16 86.04±1.82 87.64±1.21
PADSM-WSFL 72.23±4.52 88.82±4.89 90.16±3.12 91.32±4.67 94.58±1.25

Table 4. The comparison results in other metrics (%) on case study I.

Method Precision F1 score Recall

FS-1 37.81±6.07 37.81±6.07 38.02±6.16
FS-2 54.21±1.02 54.60±1.51 54.47±1.12
SSGCDBN 64.29±9.25 56.78±14.11 55.42±6.19
GCN 67.51±6.16 64.47±6.85 65.21±6.54
GAT 73.69±10.44 66.95±11.28 67.99±11.95
DGAT 78.85±3.23 77.56±2.04 77.71±2.98
GCTGNN 80.10±3.82 79.64±3.68 79.93±3.44
HyperFast 76.63±6.33 74.07±5.92 74.03±6.78
TabPFN 79.75±3.32 73.91±8.67 74.44±8.04
PADSM-WSFL 91.57±1.01 90.84±1.36 90.91±1.41

Moreover, these experimental findings provide compelling
evidence that the implementation of PADSM-WSFL networks
can fundamentally enhance the robustness and reliability of
fault diagnosis systems, especially in resource-constrained
scenarios where only a limited number of training samples
are available. Subsequently, upon expanding the training data-
set to 15 samples, PADSM-WSFL demonstrated even more
remarkable performance improvements, achieving accuracy
rates that significantly surpassed both TabPFN (92.02%) and
HyperFast (87.64%), thereby further validating its enhanced
learning capabilities and superior diagnostic precision in few-
shot learning contexts.

It is particularly noteworthy that, in contrast to the afore-
mentioned semi-supervised learning models, the proposed
PADSM-WSFL method achieves these results using only
a small subset of labeled data, rather than relying on a

combination of limited labeled data and extensive unlabeled
data, as is typical in semi-supervised learning approaches.
The experimental outcomes thus provide strong evidence for
the efficacy of weakly supervised learning and the enhanced
distance metric function incorporated within the proposed
framework.

In order to gain a more comprehensive understanding of the
performance of various methodologies, T-SNE plots are gen-
erated and are depicted in figure 9. The results demonstrate
that PADSM-WSFL exhibits superior capability in distin-
guishing between different types of fault signals. Specifically,
when utilizing only one sample per class for model training,
networks based on supervised and semi-supervised learning
techniques demonstrate a marked inability to differentiate
between various fault signals, only managing to distinguish
fault type C1 (broken) from other types. Although DGAT
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Figure 9. The T-SNE visualization of feature distributions for various methods in case study I. (a)–(c) Represent models trained with 1, 5
and 15 samples per class, respectively. Fault categories C1 through C4 correspond to broken, chipped, crack, and normal conditions.

shows marginally improved performance and can separate a
greater number of fault types in the feature space, its cap-
abilities remain limited. In contrast, PADSM-WSFL demon-
strates a remarkable ability to differentiate almost all fault
types, with only minor confusion occurring between fault
types C2 (chipped) and C4 (normal). As the number of train-
ing samples increases to 15 per class, PADSM-WSFL achieves
perfect separation of different fault signal types, as illustrated
in figure 9(c). However, other models continue to struggle
with the classification of certain fault types, particularly C2
(chipped), C3 (crack), and C4 (normal). These visualiza-
tion results provide strong evidence that the PADSM-WSFL
framework can effectively extract vibration signal features in
few-shot scenarios and achieve superior separation of signal
features for different fault types within the feature space.

To conduct a more rigorous quantitative analysis of the
diagnostic results, confusion matrices were employed in this
case study, with the results depicted in figure 10. The data
reveals that when using 15 samples per class for training, the
proposed PADSM-WSFL method successfully recognizes all
fault types with high accuracy. Furthermore, semi-supervised
models including SSGCDBN, GAT, DGAT, and GCTGNN
face significant challenges in differentiating between broken
and chipped failures. The few-shot learning approaches, par-
ticularly methods such as TabPFN, encounter significant chal-
lenges when dealing with feature overlapping among crack,
chipped, and normal classifications, especially when limited to
only 15 training samples per class. This limitation in classific-
ation performance is clearly illustrated in figure 10, where the
confusion matrix metrics reveal substantial misclassification
patterns between these overlapping categories. Furthermore,
the results underscore the inherent difficulties in distinguish-
ing subtle variations between damage types when operating

under few-shot learning constraints. The proposed PADSM-
WSFL method, however, demonstrates remarkable perform-
ance by accurately recognizing all four types of failures,
achieving an impressive average accuracy of 95%. These find-
ings underscore the efficacy of the PADSM-WSFL framework
in fault diagnosis tasks, particularly in scenarios with limited
training data.

4.2. Case study II

To further validate the effectiveness of the proposed method
PADSM-WSFL, a test apparatus known as the drivetrain dia-
gnostics simulation (DDS) is employed in this case study. The
DDS, as illustrated in figure 11, comprises a complex array of
interconnected components, each serving a specific function
in the experimental process. These components include, but
are not limited to, a high-precision data acquisition system, a
driven motor for power input, a torque transducer for meas-
uring rotational force, a planetary gearbox, multiple acceler-
ometers for vibration measurement, a parallel gearbox sys-
tem, and a loading system to simulate various operational
conditions. For the purposes of this investigation, the oper-
ational parameters are carefully controlled and standardized.
Specifically, the input speed was set at 20 Hz, while the output
load was maintained at 0.35 A.

As discussed in case study I, this section further explores
the effectiveness of the proposed PADSM-WSFL method in
comparison to various established techniques, including FS-1,
FS-2, SSGCDBN, GCN, GAT, DGAT, GCTGNN, HyperFast
and TabPFN. The diagnostic results derived from the DDS
datasets are detailed in table 5 and visually illustrated in
figure 8(b). The values highlighted in bold denote the superior
performance metrics attained through diverse methodological
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Figure 10. Comparative analysis of confusion matrices for selected methods in case study I (15 samples per class): (a) SSGCDBN, (b)
GAT, (c) DGAT, (d) GCTGNN, (e) TabPFN, (f) PADSM-WSFL. Fault categories 0∼3 correspond to broken, chipped, crack, and normal
conditions, respectively.

Figure 11. Diagram of the drivetrain diagnostics simulation (DDS).

approaches under experimental conditions. This study com-
pares the proposed PADSM-WSFL method with well-known
supervised learning models, such as FS-1 and FS-2. It is evid-
ent that PADSM-WSFL significantly enhances performance
relative to these models. Specifically, when trained with a
single sample for each faulty class, PADSM-WSFL attains an
accuracy of 62.71% , substantially outperforming FS-1 and
FS-2 by 29.58% and 41.07%, respectively. As the number of
training samples increases to 15, PADSM-WSFL achieves a
notable diagnostic accuracy of 95.83%, while the supervised
methods struggle to exceed 68% accuracy. A comprehensive

comparison results in other metrics is also recorded in
table 6.

In addition, this study includes a comparative analysis
with semi-supervised learning methods, such as SSGCDBN,
GCN, GAT, DGAT and GCTGNN. The proposed PADSM-
WSFL method consistently outperforms these models as well.
Notably, when the number of training samples per class is
increased to three, PADSM-WSFL continues to show superior
performance, surpassing SSGCDBN, GCN, GAT, DGAT and
GCTGNN by 46.80%, 52.57%, 48.05%, 53.05% and 55.76%
in terms of accuracy, respectively. These experimental results
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Table 5. The comparison results in accuracy (%) on case study II.

Method 1 3 5 10 15

FS-1 29.58±0.95 35.49±3.41 34.93±1.93 45.38±7.98 50.14±5.71
FS-2 41.07±1.62 45.33±4.79 49.53±8.27 61.20±6.43 67.67±2.99
SSGCDBN 45.83±4.35 46.80±1.84 60.27±3.67 70.07±2.90 81.11±3.79
GCN 45.48±8.55 52.57±2.93 62.50±4.16 63.82±4.10 78.33±0.34
GAT 45.97±8.44 48.05±5.24 55.62±9.92 60.62±2.96 77.49±4.90
DGAT 49.86±9.88 53.05±4.64 65.35±6.26 66.39±2.66 78.75±2.64
GCTGNN 53.12±4.48 55.76±6.34 62.22±4.66 67.84±2.05 76.70±5.01
HyperFast 37.43±3.54 58.07±4.20 69.11±3.34 85.19±4.24 89.04±2.04
TabPFN 58.90±4.00 69.26±3.06 75.18±1.94 74.46±4.06 82.91±2.13
PADSM-WSFL 62.71±2.98 81.11±2.56 86.94±1.47 92.71±1.46 95.83±0.68

Table 6. The comparison results in other metrics (%) on case study II.

Method Precision F1 score Recall

FS-1 29.43±4.17 29.29±4.12 29.38±4.27
FS-2 60.56±8.75 60.59±8.62 61.09±8.44
SSGCDBN 69.29±4.19 63.28±5.24 61.25±3.25
GCN 72.78±3.90 71.05±4.77 71.88±4.16
GAT 60.02±5.77 55.02±6.28 54.58±6.01
DGAT 69.80±2.21 68.65±2.56 68.68±3.37
GCTGNN 74.20±2.23 74.33±7.15 78.82±7.13
HyperFast 74.82±11.04 70.37±12.75 70.21±12.82
TabPFN 74.73±2.14 70.31±0.41 70.83±0.36
PADSM-WSFL 86.79±2.90 84.34±2.01 84.44±2.72

Figure 12. The T-SNE visualization of feature distributions for various methods in case study II. (a), (b) Represent models trained with 10
and 15 samples per class, respectively. Fault categories C1 through C4 correspond to broken, chipped, crack, and normal conditions.

provide compelling evidence that implementing PADSM-
WSFL networks can significantly enhance the accuracy of
fault diagnosis in scenarios where only limited training
samples are available. With 10 training samples, PADSM-
WSFL shows a remarkable improvement, outperforming
DGAT and GCTGNN by 26.32% and 24.87%, respectively.
This performance gap peaks at 15 training samples, where
PADSM-WSFL achieves an impressive accuracy of 95.83%,
while GCN and DGAT attain 78.33% and 78.75%, respect-
ively. This significant advantage can also be illustrated in
figure 12.

In the comprehensive comparative analysis against well-
established few-shot learning methodologies, particularly
TabPFN and HyperFast, the performance metrics and empir-
ical outcomes of the respective approaches have been metic-
ulously documented in table 5 and systematically visual-
ized in figure 8(b). Through rigorous experimental valida-
tion, the empirical evidence conclusively demonstrates that
the proposed PADSM-WSFLmethod not only consistently but
also significantly outperforms these SOTA benchmark models
across a diverse spectrum of testing scenarios. Of particular
significance is the observation that when the training dataset is
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incrementally expanded to incorporate three samples per class,
PADSM-WSFL continues to exhibit exceptional diagnostic
capabilities, thereby surpassing TabPFN and HyperFast by
substantial margins of 69.26% and 58.07% in classifica-
tion accuracy, respectively. Furthermore, these comprehensive
experimental findings provide compelling and substantiated
evidence that the strategic implementation of PADSM-WSFL
networks can fundamentally enhance both the robustness and
reliability of fault diagnosis systems, especially in challenging
scenarios where only a limited number of training samples
are accessible. Moreover, upon systematically expanding the
training dataset to 15 samples, PADSM-WSFL exhibits even
more pronounced and statistically significant performance
enhancements, surpassing the baseline accuracies of TabPFN
(82.91%) and HyperFast (89.04%) by considerable margins,
thereby reinforcing its superior diagnostic capabilities in scen-
arios with moderately sized training sets. These results thus
definitively underscore its superior learning efficiency and dia-
gnostic precision, while simultaneously validating its effect-
iveness in real-world applications.

The results of the receiver operating characteristic (ROC)
curves are presented in figure 13. These curves, which plot the
true positive rate on the vertical axis against the false positive
rate on the horizontal axis, illustrate the performance of classi-
fication models at various threshold settings. It is important to
note that this evaluation metric provides valuable insights into
model performance, with curves closer to 1 indicating superior
fault diagnosis capabilities.

Figure 13(i) demonstrates that the ROC curves for the four
distinct failure types—namely, broken, chipped, crack, and
normal conditions—approach the optimal value of 1. This
trend is particularly evident in the zoomed region, which
offers a more detailed visualization of the results. In con-
trast, the supervised model FS-2, as depicted in figure 13(a),
exhibits varying performance across different failure types.
Specifically, the area under the curve (AUC) values for broken,
chipped, crack, and normal states are 81%, 60%, 47%, and
30%, respectively. Interestingly, the semi-supervised models,
such as GAT and DGAT, demonstrate enhanced performance
compared to their supervised counterparts. As illustrated in
figure 13(d), GAT achieves high accuracy in identifying fail-
ures, with AUC values of 100%, 83%, 93%, and 87% for
the aforementioned failure types, respectively. Furthermore,
DGAT, shown in figure 13(e), exhibits even more impress-
ive results, with AUC values of 100%, 90%, 94%, and 92%
for the same failure categories. Furthermore, the performance
characteristics of two prominent few-shot learning methodo-
logies, namely HyperFast and TabPFN, are comprehensively
depicted in figures 13(g) and (h), respectively. Upon care-
ful analysis of the experimental results, it becomes evident

that the HyperFast algorithm demonstrates remarkable dis-
criminative capabilities, achieving AUC values of 100% for
broken states, whilemaintaining robust performancewith 95%
for chipped states, 93% for crack states, and 95% for nor-
mal states. In parallel, the TabPFNmethodology exhibits com-
parable yet slightly lower performance metrics, attaining an
optimal AUC value of 100% for broken states, while yielding
values of 91%, 92%, and 92% for chipped, crack, and nor-
mal states, respectively. These results underscore the efficacy
of both approaches in accurately classifying various structural
conditions, albeit with subtle variations in their discriminat-
ive capabilities. These comprehensive results provide strong
evidence that the proposed PADSM-WSFL method can main-
tain a high fault detection rate while simultaneously reducing
the false-positive rate across various fault states. This achieve-
ment underscores the potential of semi-supervised learning
approaches in enhancing the accuracy and reliability of fault
diagnosis systems.

4.3. Discussions on the impact of noise

To verify the performance of processing noisy signals, differ-
ent signal-to-noise ratios (SNRs) of Gaussian noise, including
0 dB, 5 dB and 10 dB, are added to the data in the case II data-
set, according to the SNR(dB)= 10log10

(
Psignal

Pnoise

)
. The Pnoise

is the noise power, Psignal is the signal power.
The experimental results are given in table 7. It can be

seen that the performance of the proposed method is still reli-
able when the SNR is greater than 5 dB, but the perform-
ance decreases when the SNR is 0 dB. This degradation can
be attributed to the fact that the graph structure relies on the
similarity between samples; noise can diminish this similarity,
even among samples with same labels. Consequently, it dis-
rupts the connections between similar samples, thereby deteri-
orating the overall quality of the graph.

4.4. Discussions on k values

The impact of neighborhood parameter selection on graph-
based spectral analysis warrants systematic examination.
Figure 14 shows diagnostic accuracies of the proposed method
at different k values. As shown, different k values have certain
influences on the diagnostic effects. For Case I, k = 2 has the
highest accuracy 92.71%; as for Case II, the highest accuracy
90.83% is obtained at k= 3.

The diagnostic accuracy shows a fluctuating downward
trend with the increase of k value, mainly because under the
condition of few-shot samples, increasing k value will increase
the probability of constructing edge connections between
samples with different labels.
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Figure 13. The ROC curves for comparative methods using 15 samples per class in case study II: (a) FS-2, (b) SSGCDBN, (c) GCN, (d)
GAT, (e) DGAT, (f) GCTGNN, (g) HyperFast, (h) TabPFN, (i) PADSM-WSFL. Fault categories 0∼3 correspond to broken, chipped, crack,
and normal conditions, respectively.
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Table 7. Experimental results under different SNR levels.

SNR (dB)

Evaluation Metric 10 5 0 No noise

Accuracy (%) 90.56±1.22 90.21±0.75 87.98±0.79 92.71±1.46
F1 score (%) 90.31±1.39 90.05±0.88 87.42±1.40 92.61±0.14
Precision (%) 91.02±1.31 92.22±1.05 90.32±1.88 93.88±0.55

Figure 14. Accuracies of the proposed method at different k values.

5. Conclusion

The proposed PADSM-WSFL framework effectively
addresses the critical challenge of fault diagnosis in planetary
gearboxes under conditions of limited labeled data availab-
ility. By integrating physics-aware modeling with weakly
supervised few-shot learning, this innovative approach effi-
ciently leverages both extremely limited labeled data and sub-
stantial unlabeled data resources. Consequently, the frame-
work demonstrates superior robustness and generalization
capabilities when compared to existing SOTA methods. This
research offers a practical and adaptable solution for real-
world industrial scenarios where the scarcity of labeled data
has traditionally posed a substantial obstacle.

The framework shows promising potential for future devel-
opments and applications across multiple dimensions. First,
the methodology can be extended to diverse mechanical sys-
tems beyond planetary gearboxes, including wind turbines,
aircraft engines, and industrial robots. Second, incorporating
transfer learning and online learning mechanisms will enable
real-time adaptation and cross-domain knowledge transfer,
enhancing the system’s versatility. Third, the integration of
interpretable AI components will provide clear explanations
of diagnostic decisions, while the development of prognostic
capabilities will enable remaining useful life prediction and
early-stage fault detection. Finally, the framework can be
applied in smart manufacturing, predictive maintenance sys-
tems, and Industry 4.0 initiatives where labeled data scarcity
remains a significant challenge. However, several limitations
of the current framework should be noted. The physics-aware

modeling component introduces additional computational
overhead, which may affect real-time processing capabilities
in some applications. The framework’s performance heavily
depends on the quality and accuracy of the underlying physics
models.

Future work will focus on extending this approach to other
mechanical systems, integrating transfer learning techniques
to improve performance across various domains, and incor-
porating online learning capabilities to adapt in real time.
Additionally, exploring interpretability methods will enhance
the model’s decision-making explainability, and conducting
long-term studies will evaluate its effectiveness in predicting
early-stage faults and estimating the remaining useful life of
components.
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