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ARTICLE INFO ABSTRACT
Keywords: In cross-domain fault diagnosis, samples usually lack labels because of different working conditions. Therefore,
Cross-domain Fault diagnosis unsupervised deep transfer learning is more suitable than deep learning to tackle it. Moreover, deploying these

Unsupervised transfer learning
Depthwise separable convolution
Group normalization
Lightweight residual network
Edge deployment

methods on edge devices can reduce diagnostic latency. Thus, diagnostic methods of unsupervised deep transfer
learning deployed on edge devices deserve attention from researchers. Due to high computational costs, reducing
unnecessary model complexity while maintaining competitive performance for edge computing is a critical issue.
To address the issue, this paper proposes an unsupervised transfer learning model based on an improved
lightweight residual network, which achieves higher accuracy than complex models while significantly reducing
parameters size, making it suitable for edge deployment. First, an improved lightweight residual network is
proposed, which incorporates two novel types of residual blocks that utilize depthwise separable convolution and
group normalization. Then, a new feature extraction network is introduced by combining the improved light-
weight residual network with the Spatial and Channel Reconstruction Convolution (SCConv) module. Based on
the proposed feature extraction network, an unsupervised cross-domain fault diagnosis model is constructed,
incorporating Joint Maximum Mean Discrepancy (JMMD) and adversarial network loss for domain adaptation.
Furthermore, two bearing datasets are utilized to validate the effectiveness of the proposed method and the
improved model is deployed on an edge device to demonstrate its feasibility in practical applications. Experi-
mental results show that the proposed method achieves higher accuracy than traditional complex models while
maintaining fewer parameters and high computational efficiency, making it a practical solution for edge-based
fault diagnosis.

1. Introduction 1998), Short-Time Fourier Transform (STFT) (Cocconcelli et al., 2012),
Wigner-Ville Distribution (WVD) (Boashash and Black, 1987), singular

Traditional signal processing methods preprocess the acquired fault value decomposition (Cong et al., 2013), and blind source separation
signals to extract characteristic frequencies, including Empirical Mode (Nguyen et al., 2012), among others. For example, Bao et al. (2022)
Decomposition (EMD) (Yu et al., 2005), wavelet transform (Burrus et al., proposed a fault diagnosis model that combines EMD and Convolutional
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Sparse Filtering (CSF) (Wohlberg, 2015). Traditional fault diagnosis
methods require manual feature extraction, which introduces subjec-
tivity and uncertainty. The diagnostic performance is heavily influenced
by prior expert knowledge, making it difficult to establish corresponding
diagnostic models for varying working conditions. Meanwhile, due to
the high latitude and nonlinearity of modern data, traditional methods
are difficult to extract complex features, resulting in insufficient reli-
ability of diagnosis results.

In recent years, deep learning-based methods possess the capability
of automatic feature learning, which can extract valuable features
directly from raw data, thereby handling complex nonlinear relation-
ships and achieving intelligent fault diagnosis. Compared to traditional
methods, deep learning effectively addresses the shortcomings of the
former and greatly improves the accuracy of fault diagnosis tasks.
Various deep networks are applied to intelligent fault diagnosis,
including Multi-Layer Perceptron (MLP) (ALTobi et al., 2019), Autoen-
coder (AE) (Ma et al., 2018), Deep Belief Networks (DBN) (Wang et al.,
2020), Long Short-Term Memory (LSTM) (Han et al., 2020), and Con-
volutional Neural Network (CNN) (Wen et al., 2017). For example,
Abdeljaber et al. (2017) utilized a one-dimensional adaptive CNN that
integrates feature extraction and classification modules within a single
learning framework tailored for fault diagnosis. Ma et al. (2019) intro-
duced a deep residual learning approach for diagnosing non-stationary
operating states of planetary gearboxes using demodulation time-
—frequency features.

However, in practical engineering applications, samples often lack
labels due to variations in equipment operating conditions. Deep
learning-based methods struggle to handle the classification of such
samples, making it difficult to accomplish cross-domain fault diagnosis
tasks. These samples often share certain common characteristics within
a specific feature space. Leveraging the powerful feature extraction ca-
pabilities of deep learning, unsupervised deep transfer learning (UDTL)
(Tan et al., 2018) is introduced for fault diagnosis (Li et al., 2020) under
the condition of missing labels and has demonstrated significant prog-
ress. UDTL involves extracting features through a feature extractor and
domain adaption to map the features of the source domain and target
domain into a higher-dimensional space for discrimination, so that it can
transfer knowledge to address the issue of lacking labels in target
domain.

In light of this, researchers propose various transfer models for cross-
domain fault diagnosis. Shao et al. (2018) introduced an improved
framework based on VGG16 and wavelet transform to achieve high-
precision fault diagnosis. Gao et al. (2021) proposed a novel method
based on data self-production and a new network named SP-CNN, which
enhances the diagnostic accuracy of typical chiller faults through data
augmentation techniques. Zhao et al. (2023) proposed the Conditional
Weighted Transfer Wasserstein Autoencoder, to address the challenges
of cross-domain fault diagnosis. Yang et al. (2023) realized unbalanced
fault diagnosis in wind turbine generators based on GAN and wavelet
packet transform. Wang et al. (2023) combined graph labels and
manifold connections to enhance the generalization capability of sparse
data for fault diagnosis. Meng et al. (2022) showed a CNN-based method
using grayscale images to achieve two-dimensional fault diagnosis.
These cross-domain fault diagnosis models all utilize complex and large-
scale backbone networks, focusing solely on accuracy without paying
attention to operational efficiency.

Related studies pay more attention to constructing an overly com-
plex network, which may be unnecessary for just minor precision
improvement. That’s because although overly complex models can
achieve insignificant accuracy improvement, it incurs computational
resource costs that don’t proportionally match the increase in accuracy.
However, the related studies overlooked the critical need to optimize the
balance between complexity and accuracy. In addition, fault diagnosis
algorithms are closely related to industrial practice, so it is meaningful
to deploy the model to edge devices and consider practical applications.
Unfortunately, related studies have rarely considered the practical
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application and failed to incorporate lightweight processing consider-
ations into block designs for the deployment of edge devices.

Aiming at the above issues, this paper proposes an unsupervised
cross-domain fault diagnosis model that can be deployed on edge device.
The main contributions of this paper are as follows:

(1) Proposing two improved lightweight residual blocks to improve
the residual network. These blocks utilize depthwise separable
convolution and group normalization for reducing computing
resource consumption.

(2) Designing an unsupervised transfer learning model for fault
diagnosis. The feature extraction network consists of improved
lightweight residual blocks and the SCConv module, and the
domain adaptation module is composed of JMMD and adversarial
network loss.

(3) Deploying the source domain-trained model on edge computing
devices to simulate and validate fault diagnosis scenarios in the
target domain for actual engineering applications.

The structure of the paper is organized as followed: Section 2 in-
troduces the related research. Section 3 shows the improvements of this
paper’s transfer learning model. Section 4 presents experimental results
of the proposed model. Section 5 shows the limitation of the research
and has a prospect for the future research. Finally, Section 6 concludes
this paper.

2. Related research
2.1. Depthwise separable convolution

Depthwise separable convolution (DSConv) (Chollet, 2017) consists
of the depthwise convolution (DW) and the pointwise convolution (PW)
(Sifre and Mallat, 2014). It operates by grouping features dimensionally,
applying depthwise convolution independently to each channel, and
then using pointwise convolution to fuse all channels, thereby obtaining
features and reducing computational resource consumption.

Assume that the input data for depthwise separable convolution is
[Hin, Win] with Ci; channels, the output data is [Hoyr, Woue] With Cour
channels, the convolution kernel size is k, the padding is P and the stride
is S. The ratios between depthwise separable convolution and standard
convolution are given by the Egs. (1) ~ (4):

Hp, +2P—k

Hou = % @
Win +2P —k

Wou = mf (2)

k x k X Cip 4+ Cin X Coue 1 1
_ - 3
n k x k x Cin X Coue Cin+k2 3

:Hnut X Woue X k X k x Cin + Hoye X Woye X Cip X Cope :i+l )

r
2 Houe X Wour X k X k X Cip X Cou Cin k2

where, r; presents the ratio of paraments and r, presents the ratio of
computational load.

2.2. Group normalization

Group Normalization (GN) (Wu and He, 2018) divides feature into
multiple groups and normalizes each group’s features. Compared to
Batch Normalization (BN) (Bjorck et al., 2018), GN does not require
calculating statistical information for each channel, reducing computa-
tional consumption under small batches, as shown in Fig. 1.

In the case of one-dimensional data, it is assumed that the input
feature X has a shape of N x C x H, where N represents the batch size, C
represents the number of channels, and H represents the feature length.
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Fig. 1. The normalization: (a) BN and (b) GN.

GN divides C feature channels into G groups, so that X can be divided
into G subsets {X1,X>, ... X}, representing the features of the i group.
Finally, the statistics (mean and standard deviation) are obtained by
normalization.

2.3. Spatial and channel reconstruction convolution

Spatial and Channel reconstruction Convolution (SCConv) (Li et al.,
2023) includes two special modules: the spatial reconstruction unit
(SRU) and the channel reconstruction unit (CRU). The SCConv module
not only effectively suppresses feature redundancy but also improves
computational efficiency.

The SRU primarily operates in the spatial dimension by separating
redundant features based on weights to suppress spatial feature redun-
dancy. Its main structure is shown in Fig. 2. Specifically, the SRU is
described by Egs. (5) ~ (9) as follows:

XV =W, X (5)
XY =W,0X (6)
X} & X5, = X" @
X5 © Xy, = X" )
X" UXY = XY )

where, W;, W, represent the weights for the input X. X}’ represents the
space features with high information content. X% represents the redun-
dant features with less information content. Finally, the output X" of the
SRU is obtained through cross-reconstruction.

N represents the weight of normalization, S is a sigmoid function, T
represents a threshold to separate the features and C represents the
concatenation.

The CRU reduces feature redundancy along the channel dimension
through a Split-Transform-and-Fuse strategy, with its structure illus-
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trated in Fig. 3. The CRU first uses the Split to divide the channel fea-
tures into two parts, X,;, and Xj,,. Then it obtains Y; and Y, through
Group-wise Convolution (GWC) and Point-wise Convolution (PWC):

Y) = M°X,, + M7 X,,, 1o
Yl = MPZXlow ) Xlow (11)

Where, M¢, MP1, M2 are the weight matrixes from GWC and PWC.
Finally, combine Y; and Y5:

Y =phYi+h,Ye a2
Prtpr=1 (13)

where, $; and fj, are all importance vectors.

3. Proposed method
3.1. Improved lightweight residual block

In residual networks (He et al., 2016), residual blocks are crucial
components of the network. This paper designs two types of residual
blocks: LRBB-A and LRBB-B, in order to reduce computational resource
consumption while maintaining feature extraction capabilities.

LRBB-A (Fig. 4(a)) primarily replaces the convolution and BN in
traditional residual blocks with DSConv and GN, respectively.

Assume the input to the residual block is X , and the output Y after
passing through LRBB-A is:

Y = ReLU(G(X) + X) (14)

where, G(X) is the output of the main path branch and x is the input
connected to G(X) through skip connection.

The first DSConv in LRBB-B changes the dimension of input by
downsampling to extract more essential features. The residual connec-
tion part of LRBB-B adjusts the number of channels and dimensions of
the input features through convolution and GN, as shown in Fig. 4(b),
ensuring that the original input features are preserved as much as
possible.

Assume the input to the residual block is X , and the output Y after
passing through LRBB-B is:

Y = ReLU(G(X) + H(X)) 15)

H(x) = GN(conv(x) ) (16)

As mentioned above (Egs. (1) ~ (4)), compared to ordinary convo-
lution, depthwise separable convolution can reduce the number of pa-
rameters and computational load to about 1/8. Additionally, GN has the
significant advantage of not relying on batch size, especially under small
batch training, which greatly reduces computational complexity and
improves computational efficiency. Therefore, the residual blocks in this
paper, compared to those using ordinary convolution and BN, signifi-
cantly reduce computational resources.

xwi

Fig. 2. Spatial reconstruction unit.
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3.2. Construction of the lightweight residual network model

The lightweight of the model is also worth noting in transfer
learning, as it determines the inference efficiency of the model. There-
fore, this paper constructs a lightweight residual network model for
unsupervised cross-condition rotating machinery bearing fault

diagnosis, as shown in Fig. 5.

The lightweight residual network model consists of a lightweight
feature extraction network and a domain adaptation module. The
feature extraction network is composed of the above-mentioned light-
weight blocks and SCConv.

The domain adaptation module in this paper primarily constitutes
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Fig. 5. The improved unsupervised cross-domain fault diagnosis.

the optimization objective, which includes the adversarial networks loss
and JMMD (Long et al., 2017), as given by the Egs. (17) ~ (18).
Assuming that the source domain and target domain are D and Dy,

xfl‘f‘ }andXt = {x‘ll, xfl‘l”
sponding sample data. The data feature distributions areZ; =
{zﬁl,- Z }and Z= {zﬂ

numbers of samples.

respectively.X; = {x;l,n-, }are the corre-

zn[‘} respectively. ny and n, are the

1
Lo (P, Q) = 7
S

BRILCE
%22u<ﬂ»
ZEKZ(ZSZ d)

i=1 j=1

17

nx n

The adversarial loss L4 is from the discriminator loss function in the
GAN and it is utilized to maximize the distribution of source and target
domain data, as shown in the Eq. (18). D represents the discriminator in
the GAN.

Laa = Ex, p,) [108D(Xs) | + Eqx, p,) [log(1 — D(xt) )| s

Cross-entropy loss is an effective performance measure that provides
clear gradient information during the training process, enabling the
optimization algorithm to adjust model parameters more effectively.
Additionally, it is widely used to quantify the discrepancy between
actual labels and model predictions. By minimizing this distance, L, can
improve classification accuracy of the model. The cross-entry loss is
given by Eq. (19) as follows:

1 N C
L= _NZ Zy lOg(plc

i=1 c=1

19

where, N represents the number of samples and C represents the number
of labels. y; is the true label of the sample i and p; . is the corresponding
prediction probability.

Cross-domain fault diagnosis is essentially a classification problem.
The final optimization objective in the paper is given by Eq. (20).

mfinLc (f(x) ) + A-Domain Discrepancy

sminmaxL (f(x)) + Lo (P, Q) + (1 — 4)Laa(D(x) ) (20)
Therefore, the final optimization objective function of the model is
given by the Eq. (21):

Loss = Lc + A-Lyymp + (1 — 2)Lag @D
where, 1 represents the weight coefficient, which is selected based on
different requirements to balance the different loss functions.

3.3. Inference on edge devices

Edge devices have developmental advantages in portability, low
energy consumption, scalability, and deployment flexibility, which align
with the low computational requirements and low latency characteris-
tics of lightweight networks. Deploying a trained fault diagnosis classi-
fication model on these devices enables rapid inference and real-time
functionality, thereby offering broad application prospects.

This paper selects the Raspberry Pi 5 (Fig. 6) as the edge device, and
the proposed lightweight model as the fault diagnosis model. The fault
diagnosis model is deployed on the Raspberry Pi 5 to enable inference on
bearing data, achieving portable fault diagnosis.

4. Experiment

o Case Western Reserve University Data

4.1. Data set introduction

The CWRU dataset (Smith and Randall, 2015) is collected from the
drive-end bearing (SKF6205) with a sampling frequency of 12 kHz, as
shown in Fig. 7. The dataset primarily includes four operating conditions
(motor loads of 0, 1, 2, and 3 HP). It consists of one healthy state (N) and
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Fig. 6. Raspberry Pi 5 used in this paper.

Fig. 7. CWRU data test bench.

three fault states: ball fault (B), inner race fault (IR), and outer race fault
(OR). Each fault state corresponds to three fault diameters: 0.007 in.,
0.014in., and 0.021 in.. Therefore, the CWRU dataset can be categorized
into nine different fault severity levels and one healthy state. The dataset
is shown in Table 1.

In the experiments of this section, each domain contains 2000 sam-
ples, with 200 samples per category. Among them, 80 % (1600 samples)
of the source domain compose the training set, and 20 % (400 samples)
compose the test set. For the target domain, 20 % (400 samples) is used
as the validation set.

4.2. Experimental results

4.2.1. Data preprocessing experiment

Since one-dimensional data only contains time-domain or frequency-
domain information, the data features are relatively simple, so it is
difficult to deeply acquire certain characteristic information. Therefore,

Table 1
CWRU data set fault information.

Domain loads Diagnosis task

A OHP A — B(T1) A - C(T2) A - D(T3)

B 1HP B — A(T4) B - C(T5) B — D(T6)

C 2HP C - A(T7) C — B(T8) C — D(T9)

D 3HP D — A(T10) D — B(T11) D — C(T12)

Class: ®N; @0.007_IR; ®0.007_B; ®0.007_OR;
®0.014_IR; ®0.014_B; ©0.014_OR;
®0.021_IR; ®0.021_B; @0.021_OR;
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two-dimensional time-frequency image data is introduced for
preprocessing.

Firstly, this paper uses the STFT to convert vibration signals into two-
dimensional time-frequency images, with image sizes of 128 x 128. To
demonstrate the advantages of STFT, this paper compares the results of
fault diagnosis transfer learning using the above model when the dataset
consists of one-dimensional vibration signals, two-dimensional time-
—frequency images generated by Continuous Wavelet Transform (CWT)
(Rioul and Duhamel, 1992), two-dimensional time-frequency images
generated by Fast Spectral Correlation (FAST sc) (Antoni et al., 2017),
and two-dimensional time-frequency images generated by STFT. The
results are shown in Table 2. Examples of datasets generated by CWT,
FAST sc, and STFT are visible in Fig. 8.

As shown in Fig. 9, the average accuracy of any two-dimensional
data is at least 0.71 % higher than that of one-dimensional data.
Moreover, the STFT dataset used in this paper improves the average
accuracy by 1.17 % compared to one-dimensional data.

Among the two-dimensional datasets, STFT achieves the highest
average accuracy, indicating that the time-frequency images of STFT
contain the most abundant feature information and are the easiest to be
extracted by the network used in this paper. Additionally, the STFT
dataset achieves 100 % accuracy in eight transfer tasks, while the CWT
and FAST _sc datasets only achieves 100 % accuracy in two of the tasks.
Furthermore, the STFT dataset outperforms in nine of the tasks, with an
average improvement of 0.5 %. It is evident that the dataset pre-
processed by STFT is more suitable for the model in this paper to
perform fault diagnosis transfer learning tasks.

In order to avoid erroneous conclusions caused by random fluctua-
tions, the paired t-test is used to analyze the accuracies of different
models on transfer tasks and the results can be seen in Fig. 10. Here,
paired t-tests are performed to compare STFT with 1D, CWT, and
FAST sc separately.

Each model’s accuracies of all transfer tasks are aggregated into a
single dataset. In the paired t-test, the null hypothesis (Hp) is that the
average accuracy difference between the two models is 0, and the
alternative hypothesis (H;) is that the average accuracy difference is
non-zero. The p-values in the Fig. 10 represents the probability observed
under the assumption that the null hypothesis holds true.

Fig. 10 shows the three p-values and they are lower than 0.05, which
means Hy is false and the accuracy difference between STFT and other
models is significant. Combing that the accuracy in Table 2, it can be
found that the accuracy of STFT is significantly better than two other
methods.

4.2.1.1. Model comparison experiment. By comparing with several
existing advanced models, this section demonstrates the significant ad-
vantages of the proposed model in terms of accuracy and lightweight,
thereby proving its potential in practical applications. Several different
models are selected, as follows:

Table 2

Results of data preprocessing experiments.
Task 1D CWT FAST sc STFT
T1 100 99.5 99.5 100
T2 100 99.25 99.25 100
T3 98.47 99.75 99.25 100
T4 99.58 99.25 99.75 99.50
T5 99.86 99.5 99.75 100
T6 99.03 99.75 99.25 99.50
T7 98.61 99 99.75 99
T8 99.44 98.75 99 100
T9 99.31 100 99.5 100
T10 94.86 99.25 99.25 99.75
T11 95.42 98.50 99.5 100
T12 99.17 100 99.75 100
Average 98.64 99.375 99.438 99.81
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(b) FAST sc

(c) STFT

Fig. 8. The time—frequency images of the normal state in Domain A: (a) The CWT image, (b) The FAST sc image and (c) The STFT image.
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Fig. 9. The CWRU data preprocessing experiments.
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Fig. 10. The paired t-test result between different preprocessing methods.

(1) JAN (Long et al., 2017): CNN as the feature network with JMMD

(2) ResNet (He et al., 2016): ResNet18 as the feature network with
JMMD

(3) Repvgg (Ding et al., 2021): RepvggA1 as the feature network with
JMMD

(4) LRSAN (Yu et al., 2023): LRSAN as the feature network with MK-
MMD

(5) WMGRNMM (Yu et al., 2022): WPT (Gao et al., 2011) as the input
and MGRN as the feature network with MK-MMD

(6) Ours: The model proposed in this paper

Table 3 shows the accuracy of various transfer tasks for different
models. Firstly, as shown in Fig. 11, Ours achieves the highest average
accuracy of 99.81 %. In addition, the average accuracy achieved by
other models is approximately 98.92 %, which is about 1 % lower than
Ours. Compared to Repvgg, which reduces parameters by transforming
parameters to accelerate neural network models during inference,
Repvgg can only achieve an accuracy of 98.87 %, barely reaching the
average level. Although Ours has a slightly lower accuracy of 98.72 % in
T7 compared to Repvgg and LRSAN, it achieves 100 % accuracy in three
of the four transfer tasks, ensuring the reliability of Ours in completing
transfer tasks.

The paired t-test is used to compare Ours to other models, and the
results are shown in the Fig. 12. From this figure, except the p-value
between Ours and LRSAN, all the p-values are lower than 0.05, which
means that Ours has the significant differences with other models. By
comparing the accuracy in Table 3, it could be concluded that the ac-
curacy of Ours is significantly better than these models.

Although the difference in accuracy between ours and LRSAN is not
significant, the accuracy distribution (Fig. 13) shows that the average
accuracy of Ours is higher than LRSAN. Meanwhile, the standard devi-
ation of the proposed model’s accuracy is lower than LRSAN’s, which
means the accuracy of Ours is more stable and the proposed model is
more suitable for practical application.

Table 4 presents the number of parameters, floating point operations
(FLOPs), and average accuracy of different models. As shown in the
parameter comparison chart (Fig. 14), ours achieves high accuracy with
a smaller number of parameters and computational complexity.
Although JAN has minimal parameters (2.38 MB), the small number of
parameters in its feature network results in an accuracy of only 93.12 %
for transfer tasks, making it difficult to achieve a convincing level. Ours
has the second smallest number of parameters (7.18 MB), which is far

Table 3

Results of model comparison experiments.
Task Ours JAN ResNet Repvgg LRSAN WMG

RNMM

T1 100 92.09 98.31 98.89 100 97.78
T2 100 91.31 99.68 99.12 99.72 100
T3 100 87.15 99.42 99.36 99.72 99.72
T4 99.50 94.96 98.37 98.47 99.72 97.50
T5 100 95.86 98.59 99.03 100 100
T6 99.50 92.14 99.26 99.12 99.72 97.50
T7 99 92.44 98.36 98.94 98.89 97.22
T8 100 93.69 98.92 98.72 98.89 97.50
T9 100 95.86 99.21 99.23 100 100
T10 99.75 92.05 96.08 98.21 99.17 98.61
T11 100 92.95 97.13 98.16 99.44 97.22
T12 100 96.84 99.76 99.25 100 100

Ave 99.81 93.12 98.59 98.87 99.61 98.59
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Fig. 11. The CWRU comparison experiments of different models.
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Fig. 12. The paired t-test result between different models.
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Table 4
Results of parameter comparison experiments.
Model Ours ResNet18 JAN Repvgg
Parameters (MB) 7.18 42.61 2.38 55.12
FLOPs (10°) 93.99 592.99 404.32 860.77
Ave Acc 99.79 98.59 93.12 98.87
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Fig. 14. The comparison chart of different models.

lower than the other models. However, in terms of FLOPs, it is 76.75 %
lower than CNN, while the accuracy is increased by approximately 6.67
%. Compared to Repvgg, the model achieves an 86.97 % reduction in
parameters, an 89.08 % reduction in FLOPs, and a 0.92 % increase in
accuracy.

4.2.1.2. Ablation experiment. This section compares several different
design methods, as illustrated in Table 5, to verify the rationality of
model’s module design in achieving a balance between accuracy and
lightweight performance. Table 5 describes the specific content of
different design methods, and Table 6 shows the impact of different
designs on parameters, FLOPs, and the accuracy of various transfer
tasks.

MO represents the model in this paper. M1 represents replacing the
DSConv in the improved lightweight residual blocks with traditional
convolution layers. M2 represents changing the two convolution layers
in the improved lightweight residual blocks to DSConv and traditional
convolution respectively. M3 represents changing the two convolution
layers to traditional convolution and DSConv respectively.

As shown in Fig. 15, MO has the smallest number of parameters and
FLOPs with an average accuracy of 99.81 %, second only to M2's 99.77
%. Compared to M1, MO has a significant advantage, with 36.11 MB
fewer parameters, a 56.19 % reduction in FLOPs, and an increase in
average accuracy. Similarly, compared to M2 and M3, MO maintains
accuracy while reducing parameters and FLOPs. Therefore, among the
various models, MO ensures accuracy while demonstrating lightweight
characteristics. In summary, this paper’s model is a fault diagnosis
transfer learning model that balances accuracy and lightweight design.

Table 5

Introduction to different models.
MO The model in this paper
M1 Model based on residual blocks with traditional convolution
M2 Model based on residual blocks with DSConv + Conv

M3 Model based on residual blocks with Conv + DSConv
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Table 6
Results of ablation experiments.
STFT MO M1 M2 M3
Para (MB) 7.18 43.29 27.38 22.12
FLOPs (106) 93.99 214.58 160.55 148.03
T1 100 100 100 100
T2 100 100 100 100
T3 100 100 100 100
T4 99.50 99.34 99.48 100
T5 100 100 100 100
T6 99.50 99.29 99.52 99.75
T7 929 99.07 98.56 98.50
T8 100 100 100 100
T9 100 100 100 99.5
T10 99.75 99.31 99.72 99.25
T11 100 100 100 100
T12 100 100 100 100
Ave 99.81 99.74 99.77 99.75
50+ - 650 - 100.0
- Params
\ —s— FLOPs
40 4 - —&— Aveacc a0 Q
-\\.
304 L 00 R
— L
20 1 - Q0 7
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Fig. 15. The comparison chart of ablation experimental models.

4.3. Validation on edge deployment

This section deploys the model on a Raspberry Pi to validate that the
lightweight nature of the proposed model is sufficient to be driven by
lightweight devices. The environment configuration for the Raspberry Pi
in this section is: Python 3.9, PyTorch 1.11. Firstly, a randomly selected
fault state image from the CWRU STFT dataset is chosen as the input for
fault diagnosis on the Raspberry Pi. Then, the corresponding transfer
model trained on the GPU is selected, and the model is run on the
Raspberry Pi to obtain the final diagnosis result.

In the example, this section selects a STFT time—frequency image
from domain A with a fault category of 8 (0.021_IR) as the input. Then,
transfer learning models T4, T7, and T10 are selected to simulate three

(a) B-A

(b) C-A
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operating conditions: B-A, C-A, and D-A.

Finally, the Raspberry Pi runs the three models separately for fault
diagnosis under the three operating conditions. The final diagnosis re-
sults are shown in Fig. 16, with results visible in Table 7.

As shown in Table 7, the accuracy of the three cross-condition fault
diagnosis tasks is maintained around 98 %, with a diagnosis time of only
0.13 s. This proves the reliability of our model for cross-domain fault
diagnosis on edge devices.

e HUST bearing Data

4.4. Data set introduction

The HUST bearing dataset (Zhao et al., 2024) is collected from the
Spectra-Quest mechanical fault test bench, as shown in Fig. 17. The
components on the test bench from left to right are speed control, motor,
shaft, acceleration sensor, bearing, and data acquisition. The HUST
bearing dataset primarily includes four operating conditions: 65 Hz, 70
Hz, 75 Hz, and 80 Hz. For convenience, these conditions are named A, B,
C, and D, respectively. Under each operating condition, the data is
divided into nine fault categories, as shown in Table 8.

In the experiments of this section, the dataset contains 2000 samples,
with 200 samples per category. 80 % (1600 samples) of the source
domain is the training set, and 20 % (400 samples) is the test set. For the
target domain, 20 % (400 samples) is the validation set.

4.5. Experimental results

4.5.1.1. Data preprocessing experiment

To verify advantages of STFT selected in this paper, the accuracy of
fault diagnosis using CWT, FAST sc, and STFT under the proposed model
is compared. The results are detailed in Table 9.

As shown in Fig. 18, it is evident that in terms of two-dimensional
data preprocessing methods, STFT has significantly higher accuracy
and stability. In terms of the average accuracy, STFT improves by
approximately 20 % and 40 % compared to FAST sc and CWT, respec-
tively. From the perspective of various transfer tasks, the accuracy of
STFT is generally around 95 %, with the worst D — A task still achieving
an accuracy of 82.78 %, far higher than the other two methods. In
comparison, the accuracy of CWT ranges from 31.94 % to 86.39 %,
indicating a large distribution interval and poor stability. FAST sc has an
accuracy range of approximately 50 % to 90 %, showing improved

Table 7

Fault diagnosis results deployed on Raspberry Pi.
Task B-A C-A D-A
Result 0.021_IR 0.021_IR 0.021_IR
Probability 98.89 % 99.16 % 97.46 %
Time (s) 0.13 0.14 0.13

(c) D-A

Fig. 16. Fault diagnosis with Raspberry Pi: (a) Transfer from B to A, (b) Transfer from C to A, (c) Transfer from D to A.
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Fig. 17. HUST data test bench.

Table 8
Fault categories of HUST data.

Domain A:65 Hz, B:70 Hz, C:75 Hz, D:80 Hz

Class 1) Normal

2) Medium inner

3) Sever inner

4) Medium outer

5) Sever outer

6) Medium ball

7) Sever ball

8) Medium combination

9) Sever combination

Combination indicates that both the outer race and inner race have faults

Table 9

Results of data processing experiments.
HUST Bearing CWT FAST sc STFT
A—-B 86.39 80.83 96.39
A-C 65.00 66.67 93.33
A->D 41.67 56.94 93.72
B—- A 68.33 85.83 95.83
B—-C 50.83 80.83 93.33
B—-D 41.11 61.94 97.22
C->A 38.89 75.83 94.44
C->B 72.23 84.17 92.50
C-D 48.90 85.56 95.38
D—>A 31.94 69.17 82.78
D-B 41.39 76.94 90.28
D-C 68.89 73.06 92.78
Avg 54.63 74.81 93.16

stability and accuracy compared to CWT, but still weaker than STFT.

Similarly, the paired t-test is used to analyze the accuracy of three
preprocessing methods. From Fig. 19, the p-value between STFT and
CWT is much lower than 0.05, which means the accuracy of STFT is
significantly different from the accuracy of CWT. The average accuracy
of STFT is 38.53 % higher than the accuracy of CWT, demonstrating the
superiority of STFT. With the same analytical approach, the accuracy of
STFT is significantly better than the accuracy of FAST sc, because the p-
value is 0.00004 and the average accuracy of STFT is 18.35 % higher
than FAST sc.

4.5.1.2. Model comparison experiment

To verify the reliability and parameter advantage of our model, the
above CNN, Repvgg, and ResNet18 are still selected, and the Ours (M1)
is also added as a comparative experimental model. The results are
shown in Table 10.

As shown in Fig. 20, CNN and Repvgg exhibit significantly lower
accuracy compared to other models, with an average accuracy of
approximately 80 %. In addition, as shown in Fig. 21, the accuracy of
Ours (M1) is slightly better, with an average accuracy about 1 % higher

10
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Fig. 18. The HUST data processing results.
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Fig. 19. The paired t-test result between different preprocessing methods.

Table 10

Results of HUST comparison experiments.
HUST Bearing CNN Repvgg ResNet18 Ours(M1) Ours
A-B 89.17 86.94 96.67 95.83 96.39
A-C 84.44 76.39 94.72 94.72 93.33
A-D 79.17 90.83 93.61 95.28 93.72
B> A 92.78 88.61 94.72 97.50 95.83
B->C 90.56 81.94 95.56 97.22 93.33
B-D 86.94 72.22 95.83 97.22 97.22
C—-A 84.44 90.28 92.78 93.06 94.44
C—->B 85.56 88.61 93.33 95.56 92.50
C-D 85.28 83.61 94.72 94.72 95.38
D—-A 68.33 63.06 84.72 87.50 82.78
D-B 77.22 73.06 88.61 90.83 90.28
D-C 78.61 69.17 91.94 90.56 92.78
Para (MB) 2.38 M 55.12 M 42.61 M 42.72 M 6.21 M
FLOPs (10°) 404.85 860.77 592.99 510.94 93.99
Avg acc 83.54 80.39 93.10 94.19 93.16

than Ours. However, in terms of parameters and FLOPs, it far exceeds
Ours, and the improvement in accuracy does not match its FLOPs.
Similarly, Ours has advantages over ResNet18 in all aspects. Parameters
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Fig. 20. The HUST accuracy of different models.
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Fig. 21. The comparison chart of the model data.

and FLOPs are both reduced by about 85 %, while the accuracy is
slightly improved.

Consistent with the above analysis, the paired t-test is used here to
analyze the accuracy of the models and evaluate their differences, as
shown in Table 11. This table shows the p-values from the paired t-test
between Ours and other models. It is easy to see that the accuracy of
Ours is significantly different from the accuracy of CNN and Repvgg. The
higher average accuracy of ours compared to the two other models
proves that Ours is significantly better than CNN and Repvgg. Although
the performances of Ours, ResNet18 and M1 are similar from Fig. 22 and
Table 11, it indicates that the performance of the proposed model is
more powerful, because the proposed model reduces the parameters and
FLOPs by about 85 %.

4.6. Validation on edge deployment

To further validate the use of our model on the Raspberry Pi, the

Table 11
The p-values from the paired t-test between two models.

Model Ours-CNN Ours-Repvgg Ours-ResNet18 Ours-Ours(M1)

p-value 5.54E-6 1.25E-4 0.87 0.13

Expert Systems With Applications 296 (2026) 129106
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Fig. 22. The accuracy distribution of transfer tasks.

same environment and methods as above are selected. In this section, a
STFT time-frequency image with an operating condition of C and a fault
category of medium outer is chosen as the input for this device. Then,
three cross-condition fault diagnosis tasks are simulated, and fault
diagnosis is performed using the Raspberry Pi. The results are shown in
Table 12 and Fig. 23.

5. Limitations

Although this paper introduces an improved method which demon-
strates its strong performance for cross-domain fault diagnosis, it is still
necessary to admit that there are some small limitations. Two important
points are summarized as follows. Firstly, its diagnostic accuracy may
degrade when facing extreme domain (e.g., severe noise in data or
extremely small sample data). This limitation arises as the domain
adaptation method primarily aligns feature distributions but may
struggle with highly divergent source and target domains. The future
works should explore a more appropriate method for the extreme
domain adaptation. Secondly, edge computing devices may have diffi-
culties in the diagnosis of unknown faults. Due to the limitation of
computation resources, models deployed on the edge devices are diffi-
cult to infer unknown fault categories in real-time. Future studies should
focus on the real-time inference on unknown fault categories with the
more advanced models that can be deployed on edge devices.

6. Conclusion

Considering the practical engineering needs, this paper proposes an
improved lightweight residual network model that can be deployed on
edge devices for the cross-domain fault diagnosis. Firstly, the data is
preprocessed using STFT to generate time-frequency images, which
serve as the model’s input. Then, two lightweight residual blocks are
designed based on DSConv and GN. Additionally, an improved light-
weight residual network is constructed with SCConv, serving as the
feature extraction network for transfer learning. Subsequently, the
domain adaptation module is utilized to form the final cross-domain
fault diagnosis model. Finally, through two experimental studies, it is

Table 12
Fault diagnosis results deployed on Raspberry Pi.
Task A-C B-C D-C
Result Medium outer Medium outer Medium outer
Probability 99.87 % 99.06 % 98.98 %
Time (s) 0.14 0.13 0.13
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(a) A-C

(b) B-C
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-

(c) D-C

Fig. 23. Fault diagnosis with Raspberry Pi. (a) Transfer from A to C, (b) Transfer from B to C, (c) Transfer from D to C.

found that the model in this paper, compared to other models, has ad-
vantages such as high accuracy, small number of parameters, and high
computational efficiency.
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