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A B S T R A C T

In cross-domain fault diagnosis, samples usually lack labels because of different working conditions. Therefore, 
unsupervised deep transfer learning is more suitable than deep learning to tackle it. Moreover, deploying these 
methods on edge devices can reduce diagnostic latency. Thus, diagnostic methods of unsupervised deep transfer 
learning deployed on edge devices deserve attention from researchers. Due to high computational costs, reducing 
unnecessary model complexity while maintaining competitive performance for edge computing is a critical issue. 
To address the issue, this paper proposes an unsupervised transfer learning model based on an improved 
lightweight residual network, which achieves higher accuracy than complex models while signi昀椀cantly reducing 
parameters size, making it suitable for edge deployment. First, an improved lightweight residual network is 
proposed, which incorporates two novel types of residual blocks that utilize depthwise separable convolution and 
group normalization. Then, a new feature extraction network is introduced by combining the improved light-
weight residual network with the Spatial and Channel Reconstruction Convolution (SCConv) module. Based on 
the proposed feature extraction network, an unsupervised cross-domain fault diagnosis model is constructed, 
incorporating Joint Maximum Mean Discrepancy (JMMD) and adversarial network loss for domain adaptation. 
Furthermore, two bearing datasets are utilized to validate the effectiveness of the proposed method and the 
improved model is deployed on an edge device to demonstrate its feasibility in practical applications. Experi-
mental results show that the proposed method achieves higher accuracy than traditional complex models while 
maintaining fewer parameters and high computational ef昀椀ciency, making it a practical solution for edge-based 
fault diagnosis.

1. Introduction

Traditional signal processing methods preprocess the acquired fault 
signals to extract characteristic frequencies, including Empirical Mode 
Decomposition (EMD) (Yu et al., 2005), wavelet transform (Burrus et al., 

1998), Short-Time Fourier Transform (STFT) (Cocconcelli et al., 2012), 
Wigner-Ville Distribution (WVD) (Boashash and Black, 1987), singular 
value decomposition (Cong et al., 2013), and blind source separation 
(Nguyen et al., 2012), among others. For example, Bao et al. (2022)
proposed a fault diagnosis model that combines EMD and Convolutional 
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Sparse Filtering (CSF) (Wohlberg, 2015). Traditional fault diagnosis 
methods require manual feature extraction, which introduces subjec-
tivity and uncertainty. The diagnostic performance is heavily in昀氀uenced 
by prior expert knowledge, making it dif昀椀cult to establish corresponding 
diagnostic models for varying working conditions. Meanwhile, due to 
the high latitude and nonlinearity of modern data, traditional methods 
are dif昀椀cult to extract complex features, resulting in insuf昀椀cient reli-
ability of diagnosis results.

In recent years, deep learning-based methods possess the capability 
of automatic feature learning, which can extract valuable features 
directly from raw data, thereby handling complex nonlinear relation-
ships and achieving intelligent fault diagnosis. Compared to traditional 
methods, deep learning effectively addresses the shortcomings of the 
former and greatly improves the accuracy of fault diagnosis tasks. 
Various deep networks are applied to intelligent fault diagnosis, 
including Multi-Layer Perceptron (MLP) (ALTobi et al., 2019), Autoen-
coder (AE) (Ma et al., 2018), Deep Belief Networks (DBN) (Wang et al., 
2020), Long Short-Term Memory (LSTM) (Han et al., 2020), and Con-
volutional Neural Network (CNN) (Wen et al., 2017). For example, 
Abdeljaber et al. (2017) utilized a one-dimensional adaptive CNN that 
integrates feature extraction and classi昀椀cation modules within a single 
learning framework tailored for fault diagnosis. Ma et al. (2019) intro-
duced a deep residual learning approach for diagnosing non-stationary 
operating states of planetary gearboxes using demodulation time-
–frequency features.

However, in practical engineering applications, samples often lack 
labels due to variations in equipment operating conditions. Deep 
learning-based methods struggle to handle the classi昀椀cation of such 
samples, making it dif昀椀cult to accomplish cross-domain fault diagnosis 
tasks. These samples often share certain common characteristics within 
a speci昀椀c feature space. Leveraging the powerful feature extraction ca-
pabilities of deep learning, unsupervised deep transfer learning (UDTL) 
(Tan et al., 2018) is introduced for fault diagnosis (Li et al., 2020) under 
the condition of missing labels and has demonstrated signi昀椀cant prog-
ress. UDTL involves extracting features through a feature extractor and 
domain adaption to map the features of the source domain and target 
domain into a higher-dimensional space for discrimination, so that it can 
transfer knowledge to address the issue of lacking labels in target 
domain.

In light of this, researchers propose various transfer models for cross- 
domain fault diagnosis. Shao et al. (2018) introduced an improved 
framework based on VGG16 and wavelet transform to achieve high- 
precision fault diagnosis. Gao et al. (2021) proposed a novel method 
based on data self-production and a new network named SP-CNN, which 
enhances the diagnostic accuracy of typical chiller faults through data 
augmentation techniques. Zhao et al. (2023) proposed the Conditional 
Weighted Transfer Wasserstein Autoencoder, to address the challenges 
of cross-domain fault diagnosis. Yang et al. (2023) realized unbalanced 
fault diagnosis in wind turbine generators based on GAN and wavelet 
packet transform. Wang et al. (2023) combined graph labels and 
manifold connections to enhance the generalization capability of sparse 
data for fault diagnosis. Meng et al. (2022) showed a CNN-based method 
using grayscale images to achieve two-dimensional fault diagnosis. 
These cross-domain fault diagnosis models all utilize complex and large- 
scale backbone networks, focusing solely on accuracy without paying 
attention to operational ef昀椀ciency.

Related studies pay more attention to constructing an overly com-
plex network, which may be unnecessary for just minor precision 
improvement. That’s because although overly complex models can 
achieve insigni昀椀cant accuracy improvement, it incurs computational 
resource costs that don’t proportionally match the increase in accuracy. 
However, the related studies overlooked the critical need to optimize the 
balance between complexity and accuracy. In addition, fault diagnosis 
algorithms are closely related to industrial practice, so it is meaningful 
to deploy the model to edge devices and consider practical applications. 
Unfortunately, related studies have rarely considered the practical 

application and failed to incorporate lightweight processing consider-
ations into block designs for the deployment of edge devices.

Aiming at the above issues, this paper proposes an unsupervised 
cross-domain fault diagnosis model that can be deployed on edge device. 
The main contributions of this paper are as follows: 

(1) Proposing two improved lightweight residual blocks to improve 
the residual network. These blocks utilize depthwise separable 
convolution and group normalization for reducing computing 
resource consumption.

(2) Designing an unsupervised transfer learning model for fault 
diagnosis. The feature extraction network consists of improved 
lightweight residual blocks and the SCConv module, and the 
domain adaptation module is composed of JMMD and adversarial 
network loss.

(3) Deploying the source domain-trained model on edge computing 
devices to simulate and validate fault diagnosis scenarios in the 
target domain for actual engineering applications.

The structure of the paper is organized as followed: Section 2 in-
troduces the related research. Section 3 shows the improvements of this 
paper’s transfer learning model. Section 4 presents experimental results 
of the proposed model. Section 5 shows the limitation of the research 
and has a prospect for the future research. Finally, Section 6 concludes 
this paper.

2. Related research

2.1. Depthwise separable convolution

Depthwise separable convolution (DSConv) (Chollet, 2017) consists 
of the depthwise convolution (DW) and the pointwise convolution (PW) 
(Sifre and Mallat, 2014). It operates by grouping features dimensionally, 
applying depthwise convolution independently to each channel, and 
then using pointwise convolution to fuse all channels, thereby obtaining 
features and reducing computational resource consumption.

Assume that the input data for depthwise separable convolution is 
[Hin,Win] with Cin channels, the output data is [Hout ,Wout ] with Cout 
channels, the convolution kernel size is k, the padding is P and the stride 
is S. The ratios between depthwise separable convolution and standard 
convolution are given by the Eqs. (1) ~ (4): 

Hout =
Hin + 2P − k

S (1) 

Wout =
Win + 2P − k

S (2) 

r1 =
k × k × Cin + Cin × Cout

k × k × Cin × Cout
=

1
Cin

+
1
k2 (3) 

r2 =
Hout × Wout × k × k × Cin + Hout × Wout × Cin × Cout

Hout × Wout × k × k × Cin × Cout
=

1
Cin

+
1
k2 (4) 

where, r1 presents the ratio of paraments and r2 presents the ratio of 
computational load.

2.2. Group normalization

Group Normalization (GN) (Wu and He, 2018) divides feature into 
multiple groups and normalizes each group’s features. Compared to 
Batch Normalization (BN) (Bjorck et al., 2018), GN does not require 
calculating statistical information for each channel, reducing computa-
tional consumption under small batches, as shown in Fig. 1.

In the case of one-dimensional data, it is assumed that the input 
feature X has a shape of N × C × H, where N represents the batch size, C 
represents the number of channels, and H represents the feature length. 
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GN divides C feature channels into G groups, so that X can be divided 
into G subsets {X1,X2, ...XG}, representing the features of the i group. 
Finally, the statistics (mean and standard deviation) are obtained by 
normalization.

2.3. Spatial and channel reconstruction convolution

Spatial and Channel reconstruction Convolution (SCConv) (Li et al., 
2023) includes two special modules: the spatial reconstruction unit 
(SRU) and the channel reconstruction unit (CRU). The SCConv module 
not only effectively suppresses feature redundancy but also improves 
computational ef昀椀ciency.

The SRU primarily operates in the spatial dimension by separating 
redundant features based on weights to suppress spatial feature redun-
dancy. Its main structure is shown in Fig. 2. Speci昀椀cally, the SRU is 
described by Eqs. (5) ~ (9) as follows: 
Xw

1 = W1 · X (5) 

Xw
2 = W2 · X (6) 

Xw
11 · Xw

22 = Xw1 (7) 

Xw
21 · Xw

12 = Xw2 (8) 

Xw1 * Xw2 = Xw (9) 

where, W1, W2 represent the weights for the input X. Xw
1 represents the 

space features with high information content. Xw2 represents the redun-
dant features with less information content. Finally, the output Xw of the 
SRU is obtained through cross-reconstruction.

N represents the weight of normalization, S is a sigmoid function, T 
represents a threshold to separate the features and C represents the 
concatenation.

The CRU reduces feature redundancy along the channel dimension 
through a Split-Transform-and-Fuse strategy, with its structure illus-

trated in Fig. 3. The CRU 昀椀rst uses the Split to divide the channel fea-
tures into two parts, Xup and Xlow. Then it obtains Y1 and Y2 through 
Group-wise Convolution (GWC) and Point-wise Convolution (PWC): 
Y1 = MGXup +MP1 Xup (10) 

Y1 = MP2 Xlow * Xlow (11) 

Where, MG, MP1 , MP2 are the weight matrixes from GWC and PWC.
Finally, combine Y1 and Y2: 

Y = β1Y1 + β2Y2 (12) 

β1 + β2 = 1 (13) 

where, β1 and β2 are all importance vectors.

3. Proposed method

3.1. Improved lightweight residual block

In residual networks (He et al., 2016), residual blocks are crucial 
components of the network. This paper designs two types of residual 
blocks: LRBB-A and LRBB-B, in order to reduce computational resource 
consumption while maintaining feature extraction capabilities.

LRBB-A (Fig. 4(a)) primarily replaces the convolution and BN in 
traditional residual blocks with DSConv and GN, respectively.

Assume the input to the residual block is X , and the output Y after 
passing through LRBB-A is: 
Y = ReLU(G(X) + X ) (14) 

where, G(X) is the output of the main path branch and x is the input 
connected to G(X) through skip connection.

The 昀椀rst DSConv in LRBB-B changes the dimension of input by 
downsampling to extract more essential features. The residual connec-
tion part of LRBB-B adjusts the number of channels and dimensions of 
the input features through convolution and GN, as shown in Fig. 4(b), 
ensuring that the original input features are preserved as much as 
possible.

Assume the input to the residual block is X , and the output Y after 
passing through LRBB-B is: 
Y = ReLU(G(X) +H(X)) (15) 

H(x) = GN(conv(x) ) (16) 
As mentioned above (Eqs. (1) ~ (4)), compared to ordinary convo-

lution, depthwise separable convolution can reduce the number of pa-
rameters and computational load to about 1/8. Additionally, GN has the 
signi昀椀cant advantage of not relying on batch size, especially under small 
batch training, which greatly reduces computational complexity and 
improves computational ef昀椀ciency. Therefore, the residual blocks in this 
paper, compared to those using ordinary convolution and BN, signi昀椀-
cantly reduce computational resources.

Fig. 1. The normalization: (a) BN and (b) GN.

Fig. 2. Spatial reconstruction unit.
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3.2. Construction of the lightweight residual network model

The lightweight of the model is also worth noting in transfer 
learning, as it determines the inference ef昀椀ciency of the model. There-
fore, this paper constructs a lightweight residual network model for 
unsupervised cross-condition rotating machinery bearing fault 

diagnosis, as shown in Fig. 5.
The lightweight residual network model consists of a lightweight 

feature extraction network and a domain adaptation module. The 
feature extraction network is composed of the above-mentioned light-
weight blocks and SCConv.

The domain adaptation module in this paper primarily constitutes 

Fig. 3. Channel reconstruction unit.

Fig. 4a. LRBB-A.

Fig. 4b. LRBB-B.

C. He et al.                                                                                                                                                                                                                                       Expert Systems With Applications 296 (2026) 129106 

4 



the optimization objective, which includes the adversarial networks loss 
and JMMD (Long et al., 2017), as given by the Eqs. (17) ~ (18).

Assuming that the source domain and target domain are Ds and Dt, 
respectively.Xs =

{

xs1
1 ,⋯, xs|L|

ns

}

andXt =
{

xt1
1 ,⋯, xt|L|

nt

}

are the corre-
sponding sample data. The data feature distributions areZs =
{

zs1
1 ,⋯, zs|L|

ns

}

and Zt=
{

zt1
1 ,⋯, zt|L|

nt

}

, respectively. ns and nt are the 
numbers of samples. 

LJMMD(P,Q) =
1
n2s

3

ns

i=1

3

ns

j=1

/

l*L
Kl
(

zsl
i , zsl

j
)

+
1
n2t

3

nt

i=1

3

nt

j=1

/

l*L
Kl
(

ztl
i , ztl

j
)

−
1

nsnt

3

ns

i=1

3

nt

j=1

/

l*L
Kl
(

zsl
i , ztl

j
)

(17) 

The adversarial loss Lad is from the discriminator loss function in the 
GAN and it is utilized to maximize the distribution of source and target 
domain data, as shown in the Eq. (18). D represents the discriminator in 
the GAN. 
Lad = E(Xs ,Ds) [logD(xs) ]+E(Xt ,Dt ) [log(1 − D(xt) ) ] (18) 

Cross-entropy loss is an effective performance measure that provides 
clear gradient information during the training process, enabling the 
optimization algorithm to adjust model parameters more effectively. 
Additionally, it is widely used to quantify the discrepancy between 
actual labels and model predictions. By minimizing this distance, Lc can 
improve classi昀椀cation accuracy of the model. The cross-entry loss is 
given by Eq. (19) as follows: 

Lc = −
1
N

3

N

i=1

3

C

c=1
yi,clog(pi,c

) (19) 

where, N represents the number of samples and C represents the number 
of labels. yi,c is the true label of the sample i and pi,c is the corresponding 
prediction probability.

Cross-domain fault diagnosis is essentially a classi昀椀cation problem. 
The 昀椀nal optimization objective in the paper is given by Eq. (20). 

min
f

Lc(f(x) ) + λ⋅Domain Discrepancy
⇒min

f
max

D
Lc(f(x) ) + λ⋅LJMMD(P,Q) + (1 − λ)⋅Lad(D(x) ) (20) 

Therefore, the 昀椀nal optimization objective function of the model is 
given by the Eq. (21): 
Loss = Lc + λ⋅LJMMD +(1 − λ)⋅Lad (21) 

where, λ represents the weight coef昀椀cient, which is selected based on 
different requirements to balance the different loss functions.

3.3. Inference on edge devices

Edge devices have developmental advantages in portability, low 
energy consumption, scalability, and deployment 昀氀exibility, which align 
with the low computational requirements and low latency characteris-
tics of lightweight networks. Deploying a trained fault diagnosis classi-
昀椀cation model on these devices enables rapid inference and real-time 
functionality, thereby offering broad application prospects.

This paper selects the Raspberry Pi 5 (Fig. 6) as the edge device, and 
the proposed lightweight model as the fault diagnosis model. The fault 
diagnosis model is deployed on the Raspberry Pi 5 to enable inference on 
bearing data, achieving portable fault diagnosis.

4. Experiment

" Case Western Reserve University Data

4.1. Data set introduction

The CWRU dataset (Smith and Randall, 2015) is collected from the 
drive-end bearing (SKF6205) with a sampling frequency of 12 kHz, as 
shown in Fig. 7. The dataset primarily includes four operating conditions 
(motor loads of 0, 1, 2, and 3 HP). It consists of one healthy state (N) and 

Fig. 5. The improved unsupervised cross-domain fault diagnosis.
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three fault states: ball fault (B), inner race fault (IR), and outer race fault 
(OR). Each fault state corresponds to three fault diameters: 0.007 in., 
0.014 in., and 0.021 in.. Therefore, the CWRU dataset can be categorized 
into nine different fault severity levels and one healthy state. The dataset 
is shown in Table 1.

In the experiments of this section, each domain contains 2000 sam-
ples, with 200 samples per category. Among them, 80 % (1600 samples) 
of the source domain compose the training set, and 20 % (400 samples) 
compose the test set. For the target domain, 20 % (400 samples) is used 
as the validation set.

4.2. Experimental results

4.2.1. Data preprocessing experiment
Since one-dimensional data only contains time-domain or frequency- 

domain information, the data features are relatively simple, so it is 
dif昀椀cult to deeply acquire certain characteristic information. Therefore, 

two-dimensional time–frequency image data is introduced for 
preprocessing.

Firstly, this paper uses the STFT to convert vibration signals into two- 
dimensional time–frequency images, with image sizes of 128 × 128. To 
demonstrate the advantages of STFT, this paper compares the results of 
fault diagnosis transfer learning using the above model when the dataset 
consists of one-dimensional vibration signals, two-dimensional time-
–frequency images generated by Continuous Wavelet Transform (CWT) 
(Rioul and Duhamel, 1992), two-dimensional time–frequency images 
generated by Fast Spectral Correlation (FAST_sc) (Antoni et al., 2017), 
and two-dimensional time–frequency images generated by STFT. The 
results are shown in Table 2. Examples of datasets generated by CWT, 
FAST_sc, and STFT are visible in Fig. 8.

As shown in Fig. 9, the average accuracy of any two-dimensional 
data is at least 0.71 % higher than that of one-dimensional data. 
Moreover, the STFT dataset used in this paper improves the average 
accuracy by 1.17 % compared to one-dimensional data.

Among the two-dimensional datasets, STFT achieves the highest 
average accuracy, indicating that the time–frequency images of STFT 
contain the most abundant feature information and are the easiest to be 
extracted by the network used in this paper. Additionally, the STFT 
dataset achieves 100 % accuracy in eight transfer tasks, while the CWT 
and FAST_sc datasets only achieves 100 % accuracy in two of the tasks. 
Furthermore, the STFT dataset outperforms in nine of the tasks, with an 
average improvement of 0.5 %. It is evident that the dataset pre-
processed by STFT is more suitable for the model in this paper to 
perform fault diagnosis transfer learning tasks.

In order to avoid erroneous conclusions caused by random 昀氀uctua-
tions, the paired t-test is used to analyze the accuracies of different 
models on transfer tasks and the results can be seen in Fig. 10. Here, 
paired t-tests are performed to compare STFT with 1D, CWT, and 
FAST_sc separately.

Each model’s accuracies of all transfer tasks are aggregated into a 
single dataset. In the paired t-test, the null hypothesis (H0) is that the 
average accuracy difference between the two models is 0, and the 
alternative hypothesis (H1) is that the average accuracy difference is 
non-zero. The p-values in the Fig. 10 represents the probability observed 
under the assumption that the null hypothesis holds true.

Fig. 10 shows the three p-values and they are lower than 0.05, which 
means H0 is false and the accuracy difference between STFT and other 
models is signi昀椀cant. Combing that the accuracy in Table 2, it can be 
found that the accuracy of STFT is signi昀椀cantly better than two other 
methods.

4.2.1.1. Model comparison experiment. By comparing with several 
existing advanced models, this section demonstrates the signi昀椀cant ad-
vantages of the proposed model in terms of accuracy and lightweight, 
thereby proving its potential in practical applications. Several different 
models are selected, as follows: 

Fig. 6. Raspberry Pi 5 used in this paper.

Fig. 7. CWRU data test bench.

Table 1 
CWRU data set fault information.

Domain loads Diagnosis task
A 0HP A → B(T1) A → C(T2) A → D(T3)
B 1HP B → A(T4) B → C(T5) B → D(T6)
C 2HP C → A(T7) C → B(T8) C → D(T9)
D 3HP D → A(T10) D → B(T11) D → C(T12)
Class: ①N; ②0.007_IR; ③0.007_B; ④0.007_OR; 
⑤0.014_IR; ⑥0.014_B; ⑦0.014_OR; 
⑧0.021_IR; ⑨0.021_B; ⑩0.021_OR;

Table 2 
Results of data preprocessing experiments.

Task 1D CWT FAST_sc STFT
T1 100 99.5 99.5 100
T2 100 99.25 99.25 100
T3 98.47 99.75 99.25 100
T4 99.58 99.25 99.75 99.50
T5 99.86 99.5 99.75 100
T6 99.03 99.75 99.25 99.50
T7 98.61 99 99.75 99
T8 99.44 98.75 99 100
T9 99.31 100 99.5 100
T10 94.86 99.25 99.25 99.75
T11 95.42 98.50 99.5 100
T12 99.17 100 99.75 100
Average 98.64 99.375 99.438 99.81
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(1) JAN (Long et al., 2017): CNN as the feature network with JMMD
(2) ResNet (He et al., 2016): ResNet18 as the feature network with 

JMMD
(3) Repvgg (Ding et al., 2021): RepvggA1 as the feature network with 

JMMD

(4) LRSAN (Yu et al., 2023): LRSAN as the feature network with MK- 
MMD

(5) WMGRNMM (Yu et al., 2022): WPT (Gao et al., 2011) as the input 
and MGRN as the feature network with MK-MMD

(6) Ours: The model proposed in this paper

Table 3 shows the accuracy of various transfer tasks for different 
models. Firstly, as shown in Fig. 11, Ours achieves the highest average 
accuracy of 99.81 %. In addition, the average accuracy achieved by 
other models is approximately 98.92 %, which is about 1 % lower than 
Ours. Compared to Repvgg, which reduces parameters by transforming 
parameters to accelerate neural network models during inference, 
Repvgg can only achieve an accuracy of 98.87 %, barely reaching the 
average level. Although Ours has a slightly lower accuracy of 98.72 % in 
T7 compared to Repvgg and LRSAN, it achieves 100 % accuracy in three 
of the four transfer tasks, ensuring the reliability of Ours in completing 
transfer tasks.

The paired t-test is used to compare Ours to other models, and the 
results are shown in the Fig. 12. From this 昀椀gure, except the p-value 
between Ours and LRSAN, all the p-values are lower than 0.05, which 
means that Ours has the signi昀椀cant differences with other models. By 
comparing the accuracy in Table 3, it could be concluded that the ac-
curacy of Ours is signi昀椀cantly better than these models.

Although the difference in accuracy between ours and LRSAN is not 
signi昀椀cant, the accuracy distribution (Fig. 13) shows that the average 
accuracy of Ours is higher than LRSAN. Meanwhile, the standard devi-
ation of the proposed model’s accuracy is lower than LRSAN’s, which 
means the accuracy of Ours is more stable and the proposed model is 
more suitable for practical application.

Table 4 presents the number of parameters, 昀氀oating point operations 
(FLOPs), and average accuracy of different models. As shown in the 
parameter comparison chart (Fig. 14), ours achieves high accuracy with 
a smaller number of parameters and computational complexity. 
Although JAN has minimal parameters (2.38 MB), the small number of 
parameters in its feature network results in an accuracy of only 93.12 % 
for transfer tasks, making it dif昀椀cult to achieve a convincing level. Ours 
has the second smallest number of parameters (7.18 MB), which is far 

Fig. 8. The time–frequency images of the normal state in Domain A: (a) The CWT image, (b) The FAST_sc image and (c) The STFT image.

Fig. 9. The CWRU data preprocessing experiments.

Fig. 10. The paired t-test result between different preprocessing methods.

Table 3 
Results of model comparison experiments.

Task Ours JAN ResNet Repvgg LRSAN WMG 
RNMM

T1 100 92.09 98.31 98.89 100 97.78
T2 100 91.31 99.68 99.12 99.72 100
T3 100 87.15 99.42 99.36 99.72 99.72
T4 99.50 94.96 98.37 98.47 99.72 97.50
T5 100 95.86 98.59 99.03 100 100
T6 99.50 92.14 99.26 99.12 99.72 97.50
T7 99 92.44 98.36 98.94 98.89 97.22
T8 100 93.69 98.92 98.72 98.89 97.50
T9 100 95.86 99.21 99.23 100 100
T10 99.75 92.05 96.08 98.21 99.17 98.61
T11 100 92.95 97.13 98.16 99.44 97.22
T12 100 96.84 99.76 99.25 100 100
Ave 99.81 93.12 98.59 98.87 99.61 98.59
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lower than the other models. However, in terms of FLOPs, it is 76.75 % 
lower than CNN, while the accuracy is increased by approximately 6.67 
%. Compared to Repvgg, the model achieves an 86.97 % reduction in 
parameters, an 89.08 % reduction in FLOPs, and a 0.92 % increase in 
accuracy.

4.2.1.2. Ablation experiment. This section compares several different 
design methods, as illustrated in Table 5, to verify the rationality of 
model’s module design in achieving a balance between accuracy and 
lightweight performance. Table 5 describes the speci昀椀c content of 
different design methods, and Table 6 shows the impact of different 
designs on parameters, FLOPs, and the accuracy of various transfer 
tasks.

M0 represents the model in this paper. M1 represents replacing the 
DSConv in the improved lightweight residual blocks with traditional 
convolution layers. M2 represents changing the two convolution layers 
in the improved lightweight residual blocks to DSConv and traditional 
convolution respectively. M3 represents changing the two convolution 
layers to traditional convolution and DSConv respectively.

As shown in Fig. 15, M0 has the smallest number of parameters and 
FLOPs with an average accuracy of 99.81 %, second only to M2′s 99.77 
%. Compared to M1, M0 has a signi昀椀cant advantage, with 36.11 MB 
fewer parameters, a 56.19 % reduction in FLOPs, and an increase in 
average accuracy. Similarly, compared to M2 and M3, M0 maintains 
accuracy while reducing parameters and FLOPs. Therefore, among the 
various models, M0 ensures accuracy while demonstrating lightweight 
characteristics. In summary, this paper’s model is a fault diagnosis 
transfer learning model that balances accuracy and lightweight design.

Fig. 11. The CWRU comparison experiments of different models.

Fig. 12. The paired t-test result between different models.

Fig. 13. The accuracy distribution of transfer tasks.

Table 4 
Results of parameter comparison experiments.

Model Ours ResNet18 JAN Repvgg
Parameters (MB) 7.18 42.61 2.38 55.12
FLOPs (106) 93.99 592.99 404.32 860.77
Ave Acc 99.79 98.59 93.12 98.87

Fig. 14. The comparison chart of different models.

Table 5 
Introduction to different models.

M0 The model in this paper
M1 Model based on residual blocks with traditional convolution
M2 Model based on residual blocks with DSConv + Conv
M3 Model based on residual blocks with Conv + DSConv
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4.3. Validation on edge deployment

This section deploys the model on a Raspberry Pi to validate that the 
lightweight nature of the proposed model is suf昀椀cient to be driven by 
lightweight devices. The environment con昀椀guration for the Raspberry Pi 
in this section is: Python 3.9, PyTorch 1.11. Firstly, a randomly selected 
fault state image from the CWRU STFT dataset is chosen as the input for 
fault diagnosis on the Raspberry Pi. Then, the corresponding transfer 
model trained on the GPU is selected, and the model is run on the 
Raspberry Pi to obtain the 昀椀nal diagnosis result.

In the example, this section selects a STFT time–frequency image 
from domain A with a fault category of 8 (0.021_IR) as the input. Then, 
transfer learning models T4, T7, and T10 are selected to simulate three 

operating conditions: B-A, C-A, and D-A.
Finally, the Raspberry Pi runs the three models separately for fault 

diagnosis under the three operating conditions. The 昀椀nal diagnosis re-
sults are shown in Fig. 16, with results visible in Table 7.

As shown in Table 7, the accuracy of the three cross-condition fault 
diagnosis tasks is maintained around 98 %, with a diagnosis time of only 
0.13 s. This proves the reliability of our model for cross-domain fault 
diagnosis on edge devices. 

" HUST bearing Data

4.4. Data set introduction

The HUST bearing dataset (Zhao et al., 2024) is collected from the 
Spectra-Quest mechanical fault test bench, as shown in Fig. 17. The 
components on the test bench from left to right are speed control, motor, 
shaft, acceleration sensor, bearing, and data acquisition. The HUST 
bearing dataset primarily includes four operating conditions: 65 Hz, 70 
Hz, 75 Hz, and 80 Hz. For convenience, these conditions are named A, B, 
C, and D, respectively. Under each operating condition, the data is 
divided into nine fault categories, as shown in Table 8.

In the experiments of this section, the dataset contains 2000 samples, 
with 200 samples per category. 80 % (1600 samples) of the source 
domain is the training set, and 20 % (400 samples) is the test set. For the 
target domain, 20 % (400 samples) is the validation set.

4.5. Experimental results

4.5.1.1. Data preprocessing experiment
To verify advantages of STFT selected in this paper, the accuracy of 

fault diagnosis using CWT, FAST_sc, and STFT under the proposed model 
is compared. The results are detailed in Table 9.

As shown in Fig. 18, it is evident that in terms of two-dimensional 
data preprocessing methods, STFT has signi昀椀cantly higher accuracy 
and stability. In terms of the average accuracy, STFT improves by 
approximately 20 % and 40 % compared to FAST_sc and CWT, respec-
tively. From the perspective of various transfer tasks, the accuracy of 
STFT is generally around 95 %, with the worst D → A task still achieving 
an accuracy of 82.78 %, far higher than the other two methods. In 
comparison, the accuracy of CWT ranges from 31.94 % to 86.39 %, 
indicating a large distribution interval and poor stability. FAST_sc has an 
accuracy range of approximately 50 % to 90 %, showing improved 

Table 6 
Results of ablation experiments.

STFT M0 M1 M2 M3
Para (MB) 7.18 43.29 27.38 22.12
FLOPs (106) 93.99 214.58 160.55 148.03
T1 100 100 100 100
T2 100 100 100 100
T3 100 100 100 100
T4 99.50 99.34 99.48 100
T5 100 100 100 100
T6 99.50 99.29 99.52 99.75
T7 99 99.07 98.56 98.50
T8 100 100 100 100
T9 100 100 100 99.5
T10 99.75 99.31 99.72 99.25
T11 100 100 100 100
T12 100 100 100 100
Ave 99.81 99.74 99.77 99.75

Fig. 15. The comparison chart of ablation experimental models.

Fig. 16. Fault diagnosis with Raspberry Pi: (a) Transfer from B to A, (b) Transfer from C to A, (c) Transfer from D to A.

Table 7 
Fault diagnosis results deployed on Raspberry Pi.

Task B-A C-A D-A
Result 0.021_IR 0.021_IR 0.021_IR
Probability 98.89 % 99.16 % 97.46 %
Time (s) 0.13 0.14 0.13
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stability and accuracy compared to CWT, but still weaker than STFT.
Similarly, the paired t-test is used to analyze the accuracy of three 

preprocessing methods. From Fig. 19, the p-value between STFT and 
CWT is much lower than 0.05, which means the accuracy of STFT is 
signi昀椀cantly different from the accuracy of CWT. The average accuracy 
of STFT is 38.53 % higher than the accuracy of CWT, demonstrating the 
superiority of STFT. With the same analytical approach, the accuracy of 
STFT is signi昀椀cantly better than the accuracy of FAST_sc, because the p- 
value is 0.00004 and the average accuracy of STFT is 18.35 % higher 
than FAST_sc.

4.5.1.2. Model comparison experiment
To verify the reliability and parameter advantage of our model, the 

above CNN, Repvgg, and ResNet18 are still selected, and the Ours (M1) 
is also added as a comparative experimental model. The results are 
shown in Table 10.

As shown in Fig. 20, CNN and Repvgg exhibit signi昀椀cantly lower 
accuracy compared to other models, with an average accuracy of 
approximately 80 %. In addition, as shown in Fig. 21, the accuracy of 
Ours (M1) is slightly better, with an average accuracy about 1 % higher 

than Ours. However, in terms of parameters and FLOPs, it far exceeds 
Ours, and the improvement in accuracy does not match its FLOPs. 
Similarly, Ours has advantages over ResNet18 in all aspects. Parameters 

Fig. 17. HUST data test bench.

Table 8 
Fault categories of HUST data.

Domain A:65 Hz, B:70 Hz, C:75 Hz, D:80 Hz
Class 1) Normal

2) Medium inner
3) Sever inner
4) Medium outer
5) Sever outer
6) Medium ball
7) Sever ball
8) Medium combination
9) Sever combination

Combination indicates that both the outer race and inner race have faults

Table 9 
Results of data processing experiments.

HUST Bearing CWT FAST_sc STFT
A → B 86.39 80.83 96.39
A → C 65.00 66.67 93.33
A → D 41.67 56.94 93.72
B → A 68.33 85.83 95.83
B → C 50.83 80.83 93.33
B → D 41.11 61.94 97.22
C → A 38.89 75.83 94.44
C → B 72.23 84.17 92.50
C → D 48.90 85.56 95.38
D → A 31.94 69.17 82.78
D → B 41.39 76.94 90.28
D → C 68.89 73.06 92.78
Avg 54.63 74.81 93.16

Fig. 18. The HUST data processing results.

Fig. 19. The paired t-test result between different preprocessing methods.

Table 10 
Results of HUST comparison experiments.

HUST Bearing CNN Repvgg ResNet18 Ours(M1) Ours
A → B 89.17 86.94 96.67 95.83 96.39
A → C 84.44 76.39 94.72 94.72 93.33
A → D 79.17 90.83 93.61 95.28 93.72
B → A 92.78 88.61 94.72 97.50 95.83
B → C 90.56 81.94 95.56 97.22 93.33
B → D 86.94 72.22 95.83 97.22 97.22
C → A 84.44 90.28 92.78 93.06 94.44
C → B 85.56 88.61 93.33 95.56 92.50
C → D 85.28 83.61 94.72 94.72 95.38
D → A 68.33 63.06 84.72 87.50 82.78
D → B 77.22 73.06 88.61 90.83 90.28
D → C 78.61 69.17 91.94 90.56 92.78
Para (MB) 2.38 M 55.12 M 42.61 M 42.72 M 6.21 M
FLOPs (106) 404.85 860.77 592.99 510.94 93.99
Avg acc 83.54 80.39 93.10 94.19 93.16
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and FLOPs are both reduced by about 85 %, while the accuracy is 
slightly improved.

Consistent with the above analysis, the paired t-test is used here to 
analyze the accuracy of the models and evaluate their differences, as 
shown in Table 11. This table shows the p-values from the paired t-test 
between Ours and other models. It is easy to see that the accuracy of 
Ours is signi昀椀cantly different from the accuracy of CNN and Repvgg. The 
higher average accuracy of ours compared to the two other models 
proves that Ours is signi昀椀cantly better than CNN and Repvgg. Although 
the performances of Ours, ResNet18 and M1 are similar from Fig. 22 and 
Table 11, it indicates that the performance of the proposed model is 
more powerful, because the proposed model reduces the parameters and 
FLOPs by about 85 %.

4.6. Validation on edge deployment

To further validate the use of our model on the Raspberry Pi, the 

same environment and methods as above are selected. In this section, a 
STFT time–frequency image with an operating condition of C and a fault 
category of medium outer is chosen as the input for this device. Then, 
three cross-condition fault diagnosis tasks are simulated, and fault 
diagnosis is performed using the Raspberry Pi. The results are shown in 
Table 12 and Fig. 23.

5. Limitations

Although this paper introduces an improved method which demon-
strates its strong performance for cross-domain fault diagnosis, it is still 
necessary to admit that there are some small limitations. Two important 
points are summarized as follows. Firstly, its diagnostic accuracy may 
degrade when facing extreme domain (e.g., severe noise in data or 
extremely small sample data). This limitation arises as the domain 
adaptation method primarily aligns feature distributions but may 
struggle with highly divergent source and target domains. The future 
works should explore a more appropriate method for the extreme 
domain adaptation. Secondly, edge computing devices may have dif昀椀-
culties in the diagnosis of unknown faults. Due to the limitation of 
computation resources, models deployed on the edge devices are dif昀椀-
cult to infer unknown fault categories in real-time. Future studies should 
focus on the real-time inference on unknown fault categories with the 
more advanced models that can be deployed on edge devices.

6. Conclusion

Considering the practical engineering needs, this paper proposes an 
improved lightweight residual network model that can be deployed on 
edge devices for the cross-domain fault diagnosis. Firstly, the data is 
preprocessed using STFT to generate time–frequency images, which 
serve as the model’s input. Then, two lightweight residual blocks are 
designed based on DSConv and GN. Additionally, an improved light-
weight residual network is constructed with SCConv, serving as the 
feature extraction network for transfer learning. Subsequently, the 
domain adaptation module is utilized to form the 昀椀nal cross-domain 
fault diagnosis model. Finally, through two experimental studies, it is 

Fig. 20. The HUST accuracy of different models.

Fig. 21. The comparison chart of the model data.

Table 11 
The p-values from the paired t-test between two models.

Model Ours-CNN Ours-Repvgg Ours-ResNet18 Ours-Ours(M1)
p-value 5.54E-6 1.25E-4 0.87 0.13

Fig. 22. The accuracy distribution of transfer tasks.

Table 12 
Fault diagnosis results deployed on Raspberry Pi.

Task A-C B-C D-C
Result Medium outer Medium outer Medium outer

Probability 99.87 % 99.06 % 98.98 %
Time (s) 0.14 0.13 0.13
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found that the model in this paper, compared to other models, has ad-
vantages such as high accuracy, small number of parameters, and high 
computational ef昀椀ciency.

Declaration of competing interest

The authors declare that they have no known competing 昀椀nancial 
interests or personal relationships that could have appeared to in昀氀uence 
the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation 
of China (Nos. 52305085, 52105111 and 52405076), China Post-
doctoral Science Foundation (2023 M740021), Guangdong Basic and 
Applied Basic Research Foundation (Grant 2025A1515012256), 
Industry-Academia Cooperation Project from the Guangdong Institute of 
Special Equipment Inspection and Research Shunde Branch (XTJ-KY01- 
202503-030).

Data availability

The data that has been used is con昀椀dential.

References
Yu, D., Cheng, J., & Yang, Y. (2005). Application of EMD method and Hilbert spectrum to 

the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing, 19, 
259–270.

Burrus, C. S., Gopinath, R. A., & Guo, H. (1998). Wavelets and wavelet transforms. Rice 
University, Houston Edition, 98.

Cocconcelli, M., Zimroz, R., Rubini, R., & Bartelmus, W. (2012). STFT based approach for 
ball bearing fault detection in a varying speed motor. In Condition Monitoring of 
Machinery in Non-Stationary Operations: Proceedings of the Second International 
Conference“ Condition Monitoring of Machinery in Non-Stationnary Operations” 

CMMNO’2012, 41-50.
Boashash, B., & Black, P. (1987). An ef昀椀cient real-time implementation of the Wigner- 

Ville distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35, 
1611–1618.

Cong, F., Chen, J., Dong, G., & Zhao, F. (2013). Short-time matrix series based singular 
value decomposition for rolling bearing fault diagnosis. Mechanical Systems and 
Signal Processing, 34, 218–230.

Nguyen, V. H., Rutten, C., & Golinval, J.-C. (2012). Fault diagnosis in industrial systems 
based on blind source separation techniques using one single vibration sensor. Shock 
and Vibration, 19, 795–801.

Bao, H., Wei, Y., Zhang, Z., Wang, J., Zhang, G., & Tian, Z. (2022). EarlyWeak bearing 
fault diagnosis method based on EMD-CSF. Noise and Vibration Control, 42, 105.

Wohlberg, B. (2015). Ef昀椀cient algorithms for convolutional sparse representations. IEEE 
Transactions on Image Processing, 25, 301–315.

ALTobi, M. A. S., Bevan, G., Wallace, P., Harrison, D., & Ramachandran, K. (2019). Fault 
diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT. Engineering 
Science and Technology, an International Journal, 22, 854–861.

Ma, M., Sun, C., & Chen, X. (2018). Deep coupling autoencoder for fault diagnosis with 
multimodal sensory data. IEEE Transactions on Industrial Informatics, 14, 1137–1145.

Wang, Y., Pan, Z., Yuan, X., Yang, C., & Gui, W. (2020). A novel deep learning based fault 
diagnosis approach for chemical process with extended deep belief network. ISA 
Transactions, 96, 457–467.

Han, Y., Ding, N., Geng, Z., Wang, Z., & Chu, C. (2020). An optimized long short-term 
memory network based fault diagnosis model for chemical processes. Journal of 
Process Control, 92, 161–168.

Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based 
data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65, 
5990–5998.

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., & Inman, D. J. (2017). Real-time 
vibration-based structural damage detection using one-dimensional convolutional 
neural networks. Journal of Sound and Vibration, 388, 154–170.

Ma, S., Chu, F., & Han, Q. (2019). Deep residual learning with demodulated time- 
frequency features for fault diagnosis of planetary gearbox under nonstationary 
running conditions. Mechanical Systems and Signal Processing, 127, 190–201.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep 
transfer learning. In Arti昀椀cial Neural Networks and Machine Learning–ICANN 2018: 
27th International Conference on Arti昀椀cial Neural Networks, Rhodes, Greece, October 4- 
7, 2018, Proceedings, Part III 27, 270-279.

Li, C., Zhang, S., Qin, Y., & Estupinan, E. (2020). A systematic review of deep transfer 
learning for machinery fault diagnosis. Neurocomputing, 407, 121–135.

Shao, S., McAleer, S., Yan, R., & Baldi, P. (2018). Highly accurate machine fault diagnosis 
using deep transfer learning. IEEE Transactions on Industrial Informatics, 15, 
2446–2455.

Gao, J., Han, H., Ren, Z., & Fan, Y. (2021). Fault diagnosis for building chillers based on 
data self-production and deep convolutional neural network. Journal of Building 
Engineering, 34, Article 102043.

Zhao, K., Jia, F., & Shao, H. (2023). A novel conditional weighting transfer Wasserstein 
auto-encoder for rolling bearing fault diagnosis with multi-source domains. 
Knowledge-Based Systems, 262, Article 110203.

Yang, S., Zhou, Y., Chen, X., Deng, C., & Li, C. (2023). Fault diagnosis of wind turbines 
with generative adversarial network-based oversampling method. Measurement 
Science and Technology, 34, Article 044004.

Wang, G., Zhao, S., Chen, J., & Zhong, Z. (2023). A novel compound fault diagnosis 
method for rolling bearings based on graph label manifold metric transfer. 
Measurement Science and Technology, 34, Article 065010.

Meng, Z., Zhao, Z., Zhu, B., & Fan, F. (2022). Online diagnosis for rolling bearings based 
on multi-channel convolution and transfer learning. Measurement Science and 
Technology, 33, Article 115116.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
1251–1258.

Sifre, L., & Mallat, S. (2014). Rigid-motion scattering for texture classi昀椀cation. arXiv 
preprint arXiv:1403.1687.

Wu, Y., & He, K. (2018). Group normalization. In In Proceedings of the European 
Conference on Computer Vision (pp. 3–19).

Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding batch 
normalization. Advances in Neural Information Processing Systems, 31.

Li, J., Wen, Y., & He, L. (2023). Scconv: Spatial and channel reconstruction convolution 
for feature redundancy. In In Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (pp. 6153–6162).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 
In In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(pp. 770–778).

Long, M., Zhu, H., Wang, J., & Jordan, M. I. (2017). Deep transfer learning with joint 
adaptation networks. In International Conference on Machine Learning, 2208–2217.

Smith, W. A., & Randall, R. B. (2015). Rolling element bearing diagnostics using the Case 
Western Reserve University data: A benchmark study. Mechanical Systems and Signal 
Processing, 64, 100–131.

Rioul, O., & Duhamel, P. (1992). Fast algorithms for discrete and continuous wavelet 
transforms. IEEE Transactions on Information Theory, 38, 569–586.

Antoni, J., Xin, G., & Hamzaoui, N. (2017). Fast computation of the spectral correlation. 
Mechanical Systems and Signal Processing, 92, 248–277.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., & Sun, J. (2021). Repvgg: Making vgg-style 
convnets great again. In In Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (pp. 13733–13742).

Yu, X., Wang, Y., Liang, Z., Shao, H., Yu, K., & Yu, W. (2023). An adaptive domain 
adaptation method for rolling bearings’ fault diagnosis fusing deep convolution and 

Fig. 23. Fault diagnosis with Raspberry Pi. (a) Transfer from A to C, (b) Transfer from B to C, (c) Transfer from D to C.

C. He et al.                                                                                                                                                                                                                                       Expert Systems With Applications 296 (2026) 129106 

12 

http://refhub.elsevier.com/S0957-4174(25)02723-X/h0005
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0005
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0005
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0020
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0020
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0020
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0025
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0025
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0025
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0030
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0030
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0030
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0035
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0035
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0040
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0040
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0045
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0045
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0045
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0050
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0050
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0055
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0055
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0055
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0060
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0060
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0060
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0065
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0065
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0065
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0070
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0070
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0070
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0075
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0075
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0075
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0085
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0085
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0090
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0090
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0090
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0095
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0095
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0095
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0100
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0100
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0100
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0105
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0105
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0105
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0110
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0110
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0110
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0115
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0115
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0115
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0120
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0120
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0120
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0130
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0130
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0135
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0135
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0140
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0140
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0140
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0145
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0145
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0145
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0150
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0150
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0155
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0155
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0155
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0160
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0160
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0165
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0165
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0170
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0170
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0170
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0175
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0175


self-attention networks. IEEE Transactions on Instrumentation and Measurement, 72, 
1–14.

Yu, X., Liang, Z., Wang, Y., Yin, H., Liu, X., Yu, W., & Huang, Y. (2022). A wavelet packet 
transform-based deep feature transfer learning method for bearing fault diagnosis 
under different working conditions. Measurement, 201, Article 111597.

Gao, R. X., Yan, R., Gao, R. X., & Yan, R. (2011). Wavelet packet transform. Wavelets: 
Theory and Applications for Manufacturing, 69-81.

Zhao, C., Zio, E., & Shen, W. (2024). Domain generalization for cross-domain fault 
diagnosis: An application-oriented perspective and a benchmark study. Reliability 
Engineering & System Safety, 109964.

C. He et al.                                                                                                                                                                                                                                       Expert Systems With Applications 296 (2026) 129106 

13 

http://refhub.elsevier.com/S0957-4174(25)02723-X/h0175
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0175
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0180
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0180
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0180
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0190
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0190
http://refhub.elsevier.com/S0957-4174(25)02723-X/h0190

	An improved lightweight residual network model deployed on the edge device for the unsupervised cross-domain fault diagnosis
	1 Introduction
	2 Related research
	2.1 Depthwise separable convolution
	2.2 Group normalization
	2.3 Spatial and channel reconstruction convolution

	3 Proposed method
	3.1 Improved lightweight residual block
	3.2 Construction of the lightweight residual network model
	3.3 Inference on edge devices

	4 Experiment
	4.1 Data set introduction
	4.2 Experimental results
	4.2.1 Data preprocessing experiment
	4.2.1.1 Model comparison experiment
	4.2.1.2 Ablation experiment

	4.3 Validation on edge deployment
	4.4 Data set introduction

	4.5 Experimental results
	4.5.1.1 Data preprocessing experiment
	4.5.1.2 Model comparison experiment

	4.6 Validation on edge deployment
	5 Limitations
	6 Conclusion
	Declaration of competing interest
	Acknowledgments
	Data availability
	References



