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Abstract—In real-world applications, the diagnostic accuracy of
rolling bearings is often compromised by environmental factors
such as variable rotational speeds, transient noises, and
unexpected mechanical impacts. These factors can obscure
damage symptoms, making precise detection of bearing failures
challenging. Conventional diagnostic methods struggle to handle
these complexities and often miss failure features hidden in
multifaceted random transient noise. To address these issues, this
research introduces the Markov Latent Frequency Transition
Peak Rate (MLFTPR) methodology. MLFTPR focuses on
accurately monitoring temporal state transitions and identifying
anomalous signals, aiming to mitigate transient noise at the source
and improve resistance to external disturbances. This enhances
precision and reliability in demodulation band selection.
Additionally, an amplitude interference-reduction feature is
integrated to recognize and suppress transient noise effectively.
Experimental results validate the efficacy of MLFTPR,
demonstrating its capability to accurately diagnose bearing defects
even amidst transient disturbances.
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I. INTRODUCTION

Rolling bearings are widely used in various industries,
acting as key components in mechanical equipment across
manufacturing, transportation, and energy production. However,
due to long-term operation and harsh working conditions,
rolling bearings are prone to wear, cracks and other failures,
which can degrade equipment performance or cause shutdowns.
Therefore, timely and accurate monitoring and diagnosis rolling
bearings are crucial for ensuring the safe and stable operation
of mechanical systems [1], [2].

The primary methods for detecting and diagnosing rolling
bearing faults including vibration signal analysis [3], [4], [5]
and deep learning-based approaches [7], [8]. Vibration signal
analysis focuses on extracting key features in the tine and
frequency domains to evaluate bearing faults, making it
effective with limited data and widely applicable. Conversely,
deep learning methods, such as Convolutional Neural Networks
(CNNps) [6], Transformers [7], rely on complex algorithms and
large amounts of datasets to uncover intricate patterns and
nonlinear relationships in vibration signals. However, these
methods often suffer from poor interpretability and require
substantial data and computing resources.
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In industrial environments, the vibration signals from
localized damage to rolling bearings are crucial for fault
diagnosis. Such signals typical feature repetitive transients due
to periodic impacts from localized defects in rotating
components [8]. These impacts have noticeable periodic and
transient characteristics, visible in the frequency domain, and
can indicate damage in components like the inner ring, outer
ring and rolling elements. A significant challenge in bearing
fault detection and diagnosis is distinguishing fault information
from environmental noise to accuracy identify fault
characteristic frequencies [9].

To address this challenge, Antoni et. al. [10] applied
Spectral Kurtosis (SK) due to its effectiveness in detecting and
characterizing early faults despite strong masking noise. They
also proposed the Kurtogram, employing the Short-time Fourier
Transform (STFT) to identify transient faults, such as early
bearing or gear damage, by analyzing both frequency and time
domains. Additionally, the Square Envelope Spectrum (SES)
method was introduced, utilizing the Hilbert transform to create
an analytical signal, extract its envelope, and square it to
enhance periodic components. Antoni et al. [11] also developed
the Fast Kurtogram (FK), which reduces computation time
through fast filter banks and efficiently detects and
characterizes transient signals. Continuing these advancements,
Lei et al. [12] proposed an improved Kurtogram using wavelet
packet transform (WPT) instead of STFT, significantly
enhancing the sensitivity and accuracy of rolling bearing fault
diagnosis through adaptive filtering and multi-scale analysis.
To address the limitations of SES in detecting second-order
cyclostationary (CS2) components, Borghesani et al. [13]
introduced the Logarithmic Envelope Spectrum (LES), which
remains unbiased amidst multiple CS2 spectral correlation
sources. However, traditional SK methods face issues such as
high sensitivity to impulse noise and limited ability to detect
repetitive transient signals, often leading to misdiagnoses.
Therefore, improved SK methods have been proposed. Barszcz
et al. [14] developed the Protugram, selecting the optimal
frequency band for vibration signal demodulation based on the
kurtosis of the envelope spectrum amplitude, improving
performance under strong non-Gaussian noise. Chen et al. [15]
introduced the Product Envelope Spectrum (PES) and
PESOgram to enhance the robustness of PES for fault diagnosis
in the presence of diverse interference noises. Antoni et al. [16]
addressed Kurtogram's limitations under noisy conditions by
combining spectral entropy from time and frequency domains
to create tools such as Squared Envelope (SE) Infogram and
SES Infogram, capturing signal characteristics
comprehensively. Li et al. [5] proposed the Multiscale
Clustering Grey Infogram (MCGI), enhancing frequency band
segmentation through hierarchical clustering to improve
practical effectiveness.

Despite these advancements, traditional methods still
struggle in environments with random impulse noise, lacking
the robustness to identify potential transient interference
frequencies. This research proposes a novel strategy to reduce
transient noise interference in non-stationary bearing signals. It
leverages the characteristic response of bearings to transient
noise, identifying and suppressing minimal transient impact
interference. By incorporating a Markov transfer matrix with

wavelet transform and signal reconstruction, this approach
locates and suppresses abnormal signal components, enhancing
the Kurtogram method's ability to determine the unique
frequency band of bearing faults. Experimental evidence
demonstrates that our method effectively diagnoses bearing
faults even in the presence of transient noise.

II. RELATED THEORY

This section revisits the principal metric used for identifying
signal transformations, which detects signal anomalies through
analyzing local peak ratios, energy levels, and zero crossing
rates. Techniques like Short-time Energy (STE)[17], Short-time
Kurtosis (STK)[18], and Short-time Zero Crossing Rate
(STZCR)[17], [19].

Consider a real-world discrete signal represented by a time
series [x,], with indices ranging from 1 to N. Calculations for
this signal are performed using the following parameters, where
m is the time index, frepresents the frame index, and 4 is the
sliding window length. A window function, typically a
rectangular window w, ensures uniform sample weighting
within each frame.

xm] =x[m+f- h] - wlm] (1)

Local peaks within the signal's sliding window are
pinpointed, with a sample qualifying as a peak if it exceeds the
values of its immediate neighbors. This peak detection can be
mathematically expressed as follows.

x[m] —x[m—-1]>0,
x[m+1]-x[m] <0

@

To accurately detect peaks that indicate signal changes, it is
essential to consider both the magnitude and the rate of
variation. Focusing solely on amplitude, as is done with STE,
STK, and STZCR, might miss significant dynamics in the
signal. By introducing a threshold m,, peak detection is
improved in noisy environments, allowing for better tracking of
signal shifts and more effective identification of anomalies.

x[m] — x[m - 1] >my,
x[m+ 1] —x[m] <my

3)

Filtered conditional peaks (Np) with a moving window are
counted, and the Short-Term Local Peak Rate (STLPR) is
defined as the ratio of these peaks to the total samples in the
window.

NP
STLPR= (4)

where M denotes the window function’s length.

The assessment of peaks within a moving window employ
(4), a metric that quantifies anomaly density in the signal,
thereby capturing its local characteristics over the duration of
the window.

III. PROPOSED METHOD

Choosing the appropriate conditional peak threshold m, is
vital for STLPR accuracy. Manual setting can lead to
inconsistencies, especially with transient non-Gaussian noise.
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To address this, a Markov Latent Frequency Transition Peak
Rate (MLFTPR) is proposed. This method encompasses signal
preprocessing, Markov modeling for state change tracking, and
interference suppression for signal differentiation.

A. Wavelet Analysis and Environmental Noise Suppression

The Daubechies Wavelet Transform (DWT) [20], [21] is
employed due to its smoothness and effective time-frequency
localization, which aids in transient detection. For a vibration
signal x(r), DWT provides approximation coefficients (c4; )
and detail coefficients (cD; ).

+o0 +o0
x= ) ey 0+ ) edyy, 0 ©)
k =-0 k=-0

where j signifies the scale factor of the wavelet, and k represents
its shift factor, determining the central position. ¢j , represents

the scaling function, while Wik corresponds to the scale function.

In the decomposition process of DWT, higher-level
approximation and detail coefficients are sequentially derived
from each approximation stage, preserving and recovering
signal features across multiple frequencies and scales until the
desired decomposition depth is achieved. This procedure can be
mathematically represented as follows:

cdyy = z hln = 2K]x 1,

(6)

cDjy = Zg[n = 2k]x; _ 1
where A[n] and g[n]are the low-pass and high-pass filters,
respectively. The variable x; _, , represents the lower frequency
component of the current approximation, embodying the broad
and sustained characteristics of the signal.

Next, the approximation and detail coefficients undergo
refinement through thresholding and filtering. The filtered
approximation coefficients, denoted as cA', are obtained by
applying a Butterworth filter, mathematically described as

below.
M N
CAn = Z bi ‘ CAn—i - 2 aj . CAn—j (7)
i=0

j=1
For (7), b; and a; are the feed-forward coefficients of the
filter, respectively. The index j starts at 1, given that a, is
commonly normalized to 1.

Soft-thresholding is applied to the detail coefficients,
denoted as cD, at each stage of the decomposition to mitigate
noise, as shown below.

_ (sgn(eD)(|eDjl —¢) leDjl =€
CDZ"{ 0 leD,| <& ®)

The threshold ¢ is determined as a specific percentage of the

maximum value of ¢D;, described by the following equation.

&=k - max(cD;) 9)

After post-processing the approximation and detail
coefficients, the Inverse Discrete Wavelet Transform (IDWT)
synthesizes them to retrieval a refined signal. This process helps
in preserving the essential details of the signal after noise or
disturbance removal. The signal recovery is mathematically
represented as follows.

30= ). (eA,’-,mjﬂk(m > cD,’-,kw,,,((t)> (10)

j=—o k=-o

where ¢]. () and 7z (0 are the scaling and wavelet functions,

respectively, incorporating scale and shift parameters (j, k). It is
essential to preserve peaks that significantly deviate the mean
of the original signal. This set of peaks is identified by indices
that satisfy the following condition.

H:{i|x[(t)>Tin(t)<—r,iE{1,...,|n|}} (11)

where 7 represents the mean of the original signal. The
identification of peaks within a reconstructed signal is then
defined by the following equation.

N xi (D),
0= {30,

B. Markov Chain Analysis and Signal State Modeling

A Markov model subsequently employed to statistically
describe the transitions between states in the reconstructed
signal. This model posits that the next state is depend solely on
the current state, independent of prior states. This concept is
formally represented by the follows.

Sx) =P 1 x;.) (13)

where the transition to the next state, denoted as x;, is
determined exclusively by the probability associated with the
current state, x; _ ;. This indicates that the likelihood of moving
to the next state is entirely dictated by the immediately
preceding state, with no influence from earlier states in the
sequence.

ifiell

ifi gl (12)

PQx; | X, X, -

In the context of Markov chains, each state transition is
defined probabilistically, with the system's current state
dependent solely on its preceding state, a property referred to as
the Markov property. This property implies that future states are
independent of past states given the present state. This transition
behavior is mathematically captured in a transition probability
matrix, which enumerates the conditional probabilities for
transitions between all possible pairs of states. For a system
with n-state, this matrix provides a comprehensive view of the
n? potential state transitions, formulated through a specific
computational method. The matrix is structured as follows:

Py P 7Py

Py Py 7Py
MTPM: : : : (14)

Pan Pp 7Py

2024 Global Reliability and Prognostics and Health Management
(PHM-Beijing)



C. Signal State Mapping and Transition Frequency

Calculation

The method integrates wavelet reconstruction to convert
signal amplitudes into indexed intervals, labeled as j, which
helps in identifying signal states S;. This approach effectively
differentiates normal states from anomalies. The conversion of
complex continuous signals into a discrete format, as outlined
(15), ensures the preservation of state transition integrity. The
transformation of amplitudes into interval indices is governed by
the following equation:

{ Js x,[i] €S
j, xn[i] = max(x,,),jz Npin — 1

The original signal is divided into states §;, specifically into

10 bins ( ny,;, = 10), facilitating detailed state representation in
the Markov model.

S; = [min(x,) + (j—1) - A, min(x,) +/ - A]
_ max(x,) — min(x,) (16)

Npin

S;= (15)

where A represents the consistent gap used for signal
discretization, while ny,;, defines the granularity of the discrete
state representation in the Markov model analysis.

Analyzing state sequences frequently involves calculating
transition frequencies between states using statistical methods.
This process is facilitated by the Markov Transition Matrix
(MTM), which maps out the frequencies of state transitions and
is dented as N,;WM .

N-1
M?/ITM: Z oS, =08, 41=J) (17)

n=1

where the Kronecker Delta function, d(x, y), returns 1 if x and y
are identical, and O otherwise. N represents the total number of
states in the sequence S.

To determine a typical percentage threshold for the baseline
of a frequency distribution, one must compute the aggregate of
all elements within the matrix. The computation is carried out
using the following expression:

O=a- ) > NJ™ (18)

where the variable a, set at 0.1, representing the proportion of
normal transition occurrences relative to the overall frequency.
Thus, o quantifies the share of transitions deemed typical or
standard.

To mitigate the influence of routine transitions within the
matrix, diagonal entries and their immediate neighbors that
surpass a specified threshold 8 are nullified, setting their values
to zero. This modification results in a matrix that highlights only
significant transitions. The detailed procedure is as follows:

0 ifi=j
' <o ATMTM
N,»;VITM =10 it N " >0 (19)

Ny™ ifi # jand N}™ < 0

Upon eliminating the normal elements, the state matrix
undergoes normalization, resulting in the formation of the
Markov Transition Probability Matrix (MTPM), denoted as P;.
This matrix reflects the probability of transitioning from state i
to state j. The formula for P;;. is as follows:

MM
_ Ny
P, = (20)

. ,
N MTM o
NN - (1+ N

where N,-f indicates the count of standard transition in row i that
surpass the predefined threshold 6.

Next, prominent probabilities 13/'-are selected, representing
latent anomalous state transitions, These anomalous state

transitions are recorded in a set A by the following equation:

A= (GD1Py=0) @

Subsequently, in the discretized signal, based on the
recorded state transitions in set 4, moments indicating the
imminent occurrence of anomalies are determined. For
transitions from lower bin regions to higher bin regions,
representing an increase in signal amplitude, these are markers
of anomalies about to occur. Conversely, transitions in the
opposite direction indicate that anomalies have already
occurred and should be disregarded. This leads to the formation
of an anomalous moment set 7', which can be expressed as:

T={t|S,=i.8 ;=) () € 4,i<j} (22)

where T represents the set of anomalous moments that are about
to occur. S; is the signal state at time t.

By mapping the moments in set 7 back to the corresponding
time points in the original signal, the amplitudes of the next
sampling point at these moments are recorded. These
amplitudes form a preliminary set of anomalous amplitudes V,
which can be denoted as:

V={x(t+D |t € T} (23)
Then, the newly defined threshold, 7,,4,y,1S given by:

Tmarkov = M+ 3oy (24)

where y, and oy represent the mean and standard deviation of
the estimated set of anomalies, respectively.

Finally, the STCLPR outlined in (4) can be improved by

incorporating the Markov Latent Frequency Transition Peak
Rate (MLFTPR), as represented by:

M-2
1
MLETPR= 23" 1{ Ty > Axln] }
n=0

: H{Tmarkov > Ax[n + 1]} (25)

The indicator function, denoted here by 1, assigns a value of

1 if its argument is positive, and 0 otherwise. Ax[n] represents
the absolute difference between the signal x and its next sample

point. This function effectively acts as a binary switch,
dependent on the positivity of its input.
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Upon conducting a thorough analysis of the Markov Latent
Frequency Transition Peak Rate (MLFTPR) across the entire
signal, the average value is computed to establish a detection
threshold that identifies irregular boundaries and defines a
robust window for capturing missed anomalies. Corresponding
segments in the underlying signal are then modified to handle
amplitude peaks. The objective is to mitigate the effects of
anomalies, bolster signal reliability, and improve analytical
effectiveness, while preserving the fundamental characteristics
of the original signal. The following equations encapsulate
these methods:

K-1

1
A= EZ MLFTPRIK] (26)
k=0
Q={k| MLFTPR[K]>y- 1} (27)
Vi =L-X,i€(k-Mk-M+h),vk€eQ (28)

The term yjl.m demotes the limited signal amplitude
perturbation, where () defines the boundaries of anomalies, y
acts as the averaging factor, and L sets the amplitude constraints.

The average amplitude, x, is computed over a segment of length
M with a stride A.

IV. EXPERIMENTAL VALIDATION

A. Test Rig Setup and Data Acquisition

To validate the proposed methodology’s effectiveness, the
bearing vibration dataset was collected using a test rig, as
depicted in Fig. 1. This test rig includes a three-phase induction
motor, a torque meter, a gearbox, bearing housings A and B,
rotors, and a hysteresis brake. The experimental bearing used is
a standardized NSK bearing (NSK 6205 DDU), featuring a ball
diameter (d) of 7.90 mm, a pitch diameter (D) of 38.5 mm,
contact degree angle (¢) of zero degrees, and nine (V) number
of balls. Consequently, the shaft frequency (f,) was measured at
50.17 Hz, the fundamental train frequency (FTF) at 19.94 Hz,
and the ball pass frequency inner (BPFI) at 272.07 Hz, the ball
pass frequency outer (BPFO) at 179.43 Hz, and the ball spin
frequency (BSF) at 234.19 Hz. The vibration signal is collected
at a sampling frequency of 25600Hz.

Thermocouple

Load
Controller

g’ - Accelerometer
irection) 53

Motor & Brake
control
+

Torque
monitoring

Torque
meter

Bearing
~ housing
B A

Figure 1. Experimental testing setup.

B. Experimental Validation and Comparative Analysis

The vibration signal illustrated in Fig. 2 exhibits random
transient interferences. To effectively analyze this signal amid
such noise, the employment of Discrete Wavelet Transform
(DWT) as a preprocessing technique is selected. The DWT
facilitates the decomposition of the signal while preserving its
overall dynamics, as evidenced by the level 1 approximation
coefficients shown in Fig. 2 (b). These coefficients demonstrate
the retention of the signal's intrinsic features. Furthermore, the
detailed coefficients at levels 1, 2, and 3, derived through the
DWT, are presented in Fig. 2 (c)-(d).

Examining the high-frequency components at each level of
the DWT reveals their sensitivity to rapid signal variations,
which are crucial early indicators of potential significant events.
Simultaneously, the low-frequency components provide
insights into the fundamental structure and long-term trends of
the signal. The application of low-pass filtering to the
approximation coefficients enhances signal representation by
eliminating minor perturbations. This process simplifies the
signal's complexity and more accurately portrays its stable
trends, as depicted in Fig. 3 (a) and Fig. 3 (b).

Amplitude (m/s?)
Amplitude (m/s?)

0 2 4 6 8 10 0 2 4 6 8 10

Time (s) Time (s)
() (b)
1 1 1.
) % %
"= 05 =05 "= 05
g £ g
o o I}
E 0.0 '5 0.0 '5 0.0
s s )
g05 g-05 05
< < <
-1 -1 1

0123?5678910 0I234§5678910 7‘0123(45678910
Time (s) Time (s) Time (s)
(©) (d) (e)

Figure 2. (a) Raw signal, (b) Level 1 approximation coefficient, (c¢) Detail
coefficient (level 1), (d) Detail coefficient (level 2), and (e) Detail coefficient
(level 3) in DWT.

A comparison between the original and retrieved signals is
presented in Fig. 3 (c). The retrieved signal efficiently
eliminates noise and accentuates significant external
interferences, thereby enhancing the representation of
anomalous signal transitions. By focusing on critical
information, this method significantly improves the accuracy of
anomaly detection. Subsequently, the signal is segmented into

(e phase) distinet states using equations (16)-(20). As depicted in Fig. 3

(d), this process results in discrete signals with clear interval
distributions for both normal and noisy states.

2024 Global Reliability and Prognostics and Health Management
(PHM-Beijing)



—— Approximate Cocfficients ! —— Level 1 Coefficients
~ 02 —— Eliminated Coefficients —_ ~—— Thresholded Cocfficients
z & 05
2 01 El
% 0.0 % 0.0
E] 2
Foo1 =
£ g -05
<02 <

0 2 4 6 10 g 2 4 6 8 10
Time (s) Time (s)
(a) (b)
~— Original signal ™
< 2 Rev.imlruﬁcdslgnal ‘ g“
E ] i minnidodd | 2 o
% f %
El 8¢
% | ettt | 2
271 WA | 2
o ! ' ! 0
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
©) (d)

Figure 3. (a) Low-pass filtered approximation, (b) Thresholded detail
coefficients, (c) Raw and reconstructed Signals, (d) Equidistant signal
discretization.

To evaluate its effectiveness, the performance of the
proposed method in monitoring signal transitions was
compared with several established techniques, including Short-
Time Energy (STE), Short-Time Kurtosis (STK), and Short-
Time Zero Crossing Rate (STZCR), as illustrated in Fig. 4 (a)—

(d).

The analysis reveals that the Short-Time Energy (STE)
method, as depicted in Fig. 4 (a), which can find all the
interference components, but there is still a small amount of
interference. Similarly, the Short-Time Zero Crossing Rate
(STZCR) approach, illustrated in Fig. 4 (b), fails to adequately
differentiate transient noise interferences. The Short-Time
Kurtosis (STK) method, shown in Fig. 4 (c), also encounters
difficulties in recognizing interference components and is
highly susceptible to significant noise from unaccounted signal

elements. In contrast, the proposed MLFTPR, showcased in Fig.

4 (d), excels in accurately detecting all transient noise
disturbances, without being affected by other undetected signal
aberrations.

Fig. 5 provides a graphical representation of the frequency
and probability distributions of Markov signals through dual
heatmaps. In particular, Fig. 5 (a) presents the heatmap of
Markov signal frequencies, illuminating the periodicity of state
transitions. Here, intensely colored cells along the diagonal
indicate a predominant persistence of states, signaling system
resilience and the predictability of the signals. Bright spots off
the diagonal represent state transitions, revealing the signal's
dynamism and potential indicators of significant events or
anomalies. Dark zones, bordered in white, represent rare or
anomalous transitions, with the thickness of the borders
correlating to the rarity of these occurrences. By modifying the
heatmap to exclude high-frequency self-transitions on the
diagonal and reduce off-diagonal high-frequency transitions, a
normalized transition probability matrix is obtained, as
displayed in Fig. 5 (b). This modification highlights lower-
frequency transitions, thereby enhancing the matrix's dynamic
range. Consequently, this refined heatmap facilitates a more
sensitive detection of subtle changes or transition patterns that
might otherwise be overlooked in the frequency matrix.

Combining Fig. 3 (d) and Fig. 5 (b), we can get a series of
possible anomaly points. According to (24), we can get the real
anomaly points.
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Figure 4. (a) STE, (b) STZCR, (c) STK, and (d) MLFTPR.
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Figure 5. (a) Markov signal frequencies heat-map, (b) Scaled Markov signal
probability heat-map.

As previously discussed, the proposed MLFTPR metric has
demonstrated efficacy in identifying irregularities associated
with external transient noises. This method exhibits robustness
against such disruptions, thereby affirming the strength of the
vibration signal in resisting external transient impacts.
Furthermore, the incorporation of an amplitude-limiting
component mitigates potential amplitude interferences, thereby
enhancing the accuracy of fault identification.

The capability of this mechanism in controlling disturbance
amplitudes is clearly illustrated in Fig. 6 (a), and Fig. 6 (b).
Through the states in the transition matrix and the discretized
signal, the moment preceding the occurrence of anomalies is
estimated. Based on the corresponding position and amplitude
in the original signal, a threshold 7,4, 1S determined to
distinguish between normal and anomalous behavior in low-
probability transitions.

In the comparative case study, the Kurtogram [10] and
Infogram [16] are employed as benchmark techniques. The
analysis focuses on a raw bearing vibration signal, which is
naturally susceptible to interference from external transient
noise.. Various methods are implemented to mitigate post-
interference effects and restrict amplitude interference in this
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signal. After post-processing, the signals undergo analysis
through demodulation band selection and envelope analysis.

w

“

Amplitude (m/s?)
o

Amplitude (m/s?)
<

4 6
Time (s)
a

Figure 6. (a) Signals with interference, (b) Vibration signal with interference
suppression.

The results of the demodulation band selection for the
original vibration signal are illustrated in Fig. 7 (a) and Fig. 8
(a). Further analysis using Squared Envelope Spectrum (SES)
[10] and Logarithmic Envelope Spectrum (LES) [16] are shown
in Fig. 7 (b), Fig. 7 (c), Fig. 8 (b), and Fig. 8 (c). The Kurtogram
identified a filtered central frequency and bandwidth of [400Hz,
800Hz], while the Infogram method yields a different set, with
a central frequency and bandwidth of [800Hz, 533.3333Hz]. A
closer analysis of the envelope results in Fig. 7 (b) and Fig. 8 (c)
reveals a notable discrepancy—the absence of the characteristic
bearing frequency. This observation contrasts with theoretical
predictions, where the bearing's characteristic frequency should
be identified as f; = 272.07 Hz.

Beta-kurtogram, Beta, ;,=3.3261, Bw=800Hz, f,=400Hz
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Figure 7. Raw signal affected by external transient noise interference: (a)
Demodulation band determination via beta-Kurtogram, (b) Squared envelope
spectrum, (c¢) Envelope spectrum in logarithmic scale.
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Figure 8. Raw signal affected by external transient noise interference: (a)
Demodulation band determination via Infogram, (b) Squared envelope
spectrum, (c¢) Envelope spectrum in logarithmic scale.

Fig. 9 (a) and Fig. 10 (a) demonstrate the effects of selecting
various demodulation bands and conducting envelope analysis

on signals after amplitude interference limitation [22] and
interference suppression. In contrast, Fig. 9 (b), Fig. 9 (c), Fig.
10 (b), and Fig. 10 (c) present envelope analyses conducted with
the SES and LES methods. The derived parameters for the
filtered central frequency and bandwidth are [1600Hz,
1066.6667Hz] for the first set and [2400Hz, 1600HZz] for the
second set.

A thorough review of the envelope analysis results, depicted
in Fig. 9 (b), Fig. 9 (c), Fig. 10 (b), and Fig. 10 (c), indicates a
clear identification of characteristic frequencies, such asf, 2f,
and 3fii . These findings are crucial in substantiating the

effectiveness of the proposed method in monitoring signal state
transitions, which is particularly relevant for bearing diagnostics
environments with significant external noise challenges.

Beta-kurtogram, Beta,; =3.3262, Bw=1066.6667Hz, f=1600Hz
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Figure 9. Signal after post-interference suppression and amplitude limitation:
(a) Demodulation band determination via beta-Kurtogram, (b) Squared
envelope spectrum, (c) Envelope spectrum in logarithmic scale.

SES Inforgram, ISES , =6.3054, Bw=1600Hz, f =2400Hz
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Figure 10. Signal after post-interference suppression and amplitude limitation:
(a) Demodulation band determination via Infogram, (b) Squared envelope
spectrum, (c¢) Envelope spectrum in logarithmic scale.

V. CONCLUSION

This research introduces the Markov Latent Frequency
Transition Peak Rate (MLFTPR) methodology, designed to
overcome diagnostic challenges caused by environmental
disruptions in rolling bearings. By vigilantly tracking state
transitions and identifying anomalous signals, MLFTPR
enhances fault diagnosis in noise-cluttered environments. Its
amplitude interference control improves the accuracy of
demodulation band selection, thus boosting diagnostic
precision. Experimental results demonstrate MLFTPR's
resilience against transient noise, proving it superior to
traditional techniques. In subsequent work, the effect of the
number of bins in (15) on the result can be discussed.
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