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Abstract—In real-world applications, the diagnostic accuracy of 
rolling bearings is often compromised by environmental factors 
such as variable rotational speeds, transient noises, and 
unexpected mechanical impacts. These factors can obscure 
damage symptoms, making precise detection of bearing failures 
challenging. Conventional diagnostic methods struggle to handle 
these complexities and often miss failure features hidden in 
multifaceted random transient noise. To address these issues, this 
research introduces the Markov Latent Frequency Transition 
Peak Rate (MLFTPR) methodology. MLFTPR focuses on 
accurately monitoring temporal state transitions and identifying 
anomalous signals, aiming to mitigate transient noise at the source 
and improve resistance to external disturbances. This enhances 
precision and reliability in demodulation band selection. 
Additionally, an amplitude interference-reduction feature is 
integrated to recognize and suppress transient noise effectively. 
Experimental results validate the efficacy of MLFTPR, 
demonstrating its capability to accurately diagnose bearing defects 
even amidst transient disturbances.  
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management; vibration signal analysis; transient noise; anomaly 
detection.  
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I.  INTRODUCTION

Rolling bearings are widely used in various industries, 
acting as key components in mechanical equipment across 
manufacturing, transportation, and energy production. However, 
due to long-term operation and harsh working conditions, 
rolling bearings are prone to wear, cracks and other failures, 
which can degrade equipment performance or cause shutdowns. 
Therefore, timely and accurate monitoring and diagnosis rolling 
bearings are crucial for ensuring the safe and stable operation 
of mechanical systems [1], [2].  

The primary methods for detecting and diagnosing rolling 
bearing faults including vibration signal analysis [3], [4], [5] 
and deep learning-based approaches [7], [8]. Vibration signal 
analysis focuses on extracting key features in the tine and 
frequency domains to evaluate bearing faults, making it 
effective with limited data and widely applicable. Conversely, 
deep learning methods, such as Convolutional Neural Networks 
(CNNs) [6], Transformers [7], rely on complex algorithms and 
large amounts of datasets to uncover intricate patterns and 
nonlinear relationships in vibration signals. However, these 
methods often suffer from poor interpretability and require 
substantial data and computing resources. 
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In industrial environments, the vibration signals from 
localized damage to rolling bearings are crucial for fault 
diagnosis. Such signals typical feature repetitive transients due 
to periodic impacts from localized defects in rotating 
components [8]. These impacts have noticeable periodic and 
transient characteristics, visible in the frequency domain, and 
can indicate damage in components like the inner ring, outer 
ring and rolling elements.  A significant  challenge in  bearing 
fault detection and diagnosis is distinguishing fault information 
from environmental noise to accuracy identify fault 
characteristic frequencies [9]. 

To address this challenge, Antoni et. al. [10] applied 
Spectral Kurtosis (SK) due to its effectiveness in detecting and 
characterizing early faults despite strong masking noise. They 
also proposed the Kurtogram, employing the Short-time Fourier 
Transform (STFT) to identify transient faults, such as early 
bearing or gear damage, by analyzing both frequency and time 
domains. Additionally, the Square Envelope Spectrum (SES) 
method was introduced, utilizing the Hilbert transform to create 
an analytical signal, extract its envelope, and square it to 
enhance periodic components. Antoni et al. [11]  also developed 
the Fast Kurtogram (FK), which reduces computation time 
through fast filter banks and efficiently detects and 
characterizes transient signals. Continuing these advancements, 
Lei et al. [12] proposed an improved Kurtogram using wavelet 
packet transform (WPT) instead of STFT, significantly 
enhancing the sensitivity and accuracy of rolling bearing fault 
diagnosis through adaptive filtering and multi-scale analysis. 
To address the limitations of SES in detecting second-order 
cyclostationary (CS2) components, Borghesani et al. [13] 
introduced the Logarithmic Envelope Spectrum (LES), which 
remains unbiased amidst multiple CS2 spectral correlation 
sources. However, traditional SK methods face issues such as 
high sensitivity to impulse noise and limited ability to detect 
repetitive transient signals, often leading to misdiagnoses. 
Therefore, improved SK methods have been proposed. Barszcz 
et al. [14] developed the Protugram, selecting the optimal 
frequency band for vibration signal demodulation based on the 
kurtosis of the envelope spectrum amplitude, improving 
performance under strong non-Gaussian noise. Chen et al. [15] 
introduced the Product Envelope Spectrum (PES) and 
PESOgram to enhance the robustness of PES for fault diagnosis 
in the presence of diverse interference noises. Antoni et al. [16] 
addressed Kurtogram's limitations under noisy conditions by 
combining spectral entropy from time and frequency domains 
to create tools such as Squared Envelope (SE) Infogram and 
SES Infogram, capturing signal characteristics 
comprehensively. Li et al. [5] proposed the Multiscale 
Clustering Grey Infogram (MCGI), enhancing frequency band 
segmentation through hierarchical clustering to improve 
practical effectiveness.  

Despite these advancements, traditional methods still 
struggle in environments with random impulse noise, lacking 
the robustness to identify potential transient interference 
frequencies. This research proposes a novel strategy to reduce 
transient noise interference in non-stationary bearing signals. It 
leverages the characteristic response of bearings to transient 
noise, identifying and suppressing minimal transient impact 
interference. By incorporating a Markov transfer matrix with 

wavelet transform and signal reconstruction, this approach 
locates and suppresses abnormal signal components, enhancing 
the Kurtogram method's ability to determine the unique 
frequency band of bearing faults. Experimental evidence 
demonstrates that our method effectively diagnoses bearing 
faults even in the presence of transient noise. 

II. RELATED THEORY

This section revisits the principal metric used for identifying 
signal transformations, which detects signal anomalies through 
analyzing local peak ratios, energy levels, and zero crossing 
rates. Techniques like Short-time Energy (STE)[17], Short-time 
Kurtosis (STK)[18], and Short-time Zero Crossing Rate 
(STZCR)[17], [19].  

Consider a real-world discrete signal represented by a time 
series [xn], with indices ranging from 1 to N. Calculations for 
this signal are performed using the following parameters, where 
m is the time index, f represents the frame index, and h is the 
sliding window length. A window function, typically a 
rectangular window w , ensures uniform sample weighting 
within each frame. 

xf[m] = x[m + f ⋅ h] ⋅ w[m] (1) 

Local peaks within the signal's sliding window are 
pinpointed, with a sample qualifying as a peak if it exceeds the 
values of its immediate neighbors. This peak detection can be 
mathematically expressed as follows.  

x[m] − x[m − 1] > 0,
x[m + 1] − x[m] ≤ 0 (2) 

To accurately detect peaks that indicate signal changes, it is 
essential to consider both the magnitude and the rate of 
variation. Focusing solely on amplitude, as is done with STE, 
STK, and STZCR, might miss significant dynamics in the 
signal. By introducing a threshold md , peak detection is 
improved in noisy environments, allowing for better tracking of 
signal shifts and more effective identification of anomalies.  

x[m] − x[m − 1] > md,
x[m + 1] − x[m] ≤ md

(3) 

Filtered conditional peaks (Np) with a moving window are 
counted, and the Short-Term Local Peak Rate (STLPR) is 
defined as the ratio of these peaks to the total samples in the 
window. 

STLPR = 
Np

M
(4) 

where M denotes the window function’s length. 

The assessment of peaks within a moving window employ 
(4), a metric that quantifies anomaly density in the signal, 
thereby capturing its local characteristics over the duration of 
the window. 

III. PROPOSED METHOD

Choosing the appropriate conditional peak threshold md is 
vital for STLPR accuracy. Manual setting can lead to 
inconsistencies, especially with transient non-Gaussian noise. 
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To address this, a Markov Latent Frequency Transition Peak 
Rate (MLFTPR)  is proposed. This method encompasses signal 
preprocessing, Markov modeling for state change tracking, and 
interference suppression for signal differentiation. 

A.  Wavelet Analysis and Environmental Noise Suppression 
The Daubechies Wavelet Transform (DWT) [20], [21] is 

employed due to its smoothness and effective time-frequency 
localization, which aids in transient detection. For a vibration 
signal x(t), DWT provides approximation coefficients (cAj,k) 
and detail coefficients (cDj,k). 

x = � cAj,kϕj,k(t)
+∞

k  = -∞

+ � cAj,kψj,k(t)
+∞

k = -∞

(5) 

where j signifies the scale factor of the wavelet, and 𝑘𝑘 represents 
its shift factor, determining the central position. ϕj,k represents 
the scaling function, while ψj,k corresponds to the scale function. 

In the decomposition process of DWT, higher-level 
approximation and detail coefficients are sequentially derived 
from each approximation stage, preserving and recovering 
signal features across multiple frequencies and scales until the 
desired decomposition depth is achieved. This procedure can be 
mathematically represented as follows: 

cAj,k  = � h[n − 2k]x j− 1,n 
n

cDj,k  = � g[n − 2k]xj − 1,n 
n

(6) 

where h[n]  and g[n] are the low-pass and high-pass filters, 
respectively. The variable xj − 1,n represents the lower frequency 
component of the current approximation, embodying the broad 
and sustained characteristics of the signal. 

Next, the approximation and detail coefficients undergo 
refinement through thresholding and filtering. The filtered 
approximation coefficients, denoted as cA' , are obtained by 
applying a Butterworth filter, mathematically described as 
below. 

cAn
'  = � bi

M

i = 0

 ⋅ cAn−i − � aj

N

j = 1

 ⋅ cAn−j
' (7) 

For (7), bi and  ai are the feed-forward coefficients of the 
filter, respectively. The index 𝑗𝑗  starts at 1, given that a0  is 
commonly normalized to 1. 

Soft-thresholding is applied to the detail coefficients, 
denoted as cD', at each stage of the decomposition to mitigate 
noise, as shown below. 

cDi
'  = � sgn(cDi)(|cDi| − ε) ∣cDi∣ ≥ ε

0 ∣cDi∣ < ε (8) 

The threshold ε is determined as a specific percentage of the 
maximum value of cDi, described by the following equation. 

ε = k ⋅ max(cDi) (9) 

After post-processing the approximation and detail 
coefficients, the Inverse Discrete Wavelet Transform (IDWT) 
synthesizes them to retrieval a refined signal. This process helps 
in preserving the essential details of the signal after noise or 
disturbance removal. The signal recovery is mathematically 
represented as follows. 

x�(t)= �  
∞

j = −∞

�cAj,k
' ϕj,k(t) + � cDj,k

' ψj,k(t)
∞

k = −∞

� (10) 

where ϕj,k(t) and ψj,k(t) are the scaling and wavelet functions, 
respectively, incorporating scale and shift parameters (j, k). It is 
essential to preserve peaks that significantly deviate the mean 
of the original signal. This set of peaks is identified by indices 
that satisfy the following condition.   

Π = �i � xi(t) > τ ∨ xi(t) < −τ,i ∈ {1, … , |n|}� (11) 

where τ  represents the mean of the original signal. The 
identification of peaks within a reconstructed signal is then 
defined by the following equation. 

x�i
'(t) = � xi(t),    if i ∈ Π

x�i(t),    if i ∉ Π (12) 

B. Markov Chain Analysis and Signal State Modeling 
A Markov model subsequently employed to statistically 

describe the transitions between states in the reconstructed 
signal. This model posits that the next state is depend solely on 
the current state, independent of prior states. This concept is 
formally represented by the follows.  

P(xi ∣ xi−1, xi−2, … , x1) = P(xi ∣ xi−1) (13) 

where the transition to the next state, denoted as xi , is 
determined exclusively by the probability associated with the 
current state, xi − 1. This indicates that the likelihood of moving 
to the next state is entirely dictated by the immediately 
preceding state, with no influence from earlier states in the 
sequence.  

In the context of Markov chains, each state transition is 
defined probabilistically, with the system's current state 
dependent solely on its preceding state, a property referred to as 
the Markov property. This property implies that future states are 
independent of past states given the present state. This transition 
behavior is mathematically captured in a transition probability 
matrix, which enumerates the conditional probabilities for 
transitions between all possible pairs of states. For a system 
with n-state, this matrix provides a comprehensive view of the 
n²  potential state transitions, formulated through a specific 
computational method. The matrix is structured as follows: 

MTPM = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡p11 p12 ⋯ p1j ⋯

p21 p22 ⋯ p1j ⋯

⋮ ⋮  ⋮

pi1 pi2 ⋯ pij ⋯

⋮ ⋮ ⋮ ⋮  ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(14) 
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C. Signal State Mapping and Transition Frequency 
Calculation 
The method integrates wavelet reconstruction to convert 

signal amplitudes into indexed intervals, labeled as j , which 
helps in identifying signal states Si. This approach effectively 
differentiates normal states from anomalies. The conversion of 
complex continuous signals into a discrete format, as outlined 
(15), ensures the preservation of state transition integrity. The 
transformation of amplitudes into interval indices is governed by 
the following equation:  

Si = � 
j, xn[i] ∈ Sj

j, xn[i] = max(xn), j = nbin − 1
(15) 

The original signal is divided into states Sj, specifically into 
10 bins ( nbin = 10), facilitating detailed state representation in 
the Markov model. 

Sj = [min(xn) + ( j − 1) ⋅ Δ, min(xn) + j ⋅ Δ]

Δ = 
max(xn) − min(xn)

nbin

(16) 

where ∆  represents the consistent gap used for signal 
discretization, while nbin defines the granularity of the discrete 
state representation in the Markov model analysis. 

Analyzing state sequences frequently involves calculating 
transition frequencies between states using statistical methods. 
This process is facilitated by the Markov Transition Matrix 
(MTM), which maps out the frequencies of state transitions and 
is dented as Nij

 MTM. 

Nij
 MTM = �  

N − 1

n = 1

δ(Sn = i,Sn + 1 = j ) (17) 

where the Kronecker Delta function, δ(x, y), returns 1 if x and y 
are identical, and 0 otherwise. N represents the total number of 
states in the sequence S. 

To determine a typical percentage threshold for the baseline 
of a frequency distribution, one must compute the aggregate of 
all elements within the matrix. The computation is carried out 
using the following expression: 

θ = α ⋅ �  
n

i = 1

�  
n

j = 1

Nij
 MTM (18) 

where the variable α, set at 0.1, representing the proportion of 
normal transition occurrences relative to the overall frequency. 
Thus, α  quantifies the share of transitions deemed typical or 
standard. 

To mitigate the influence of routine transitions within the 
matrix, diagonal entries and their immediate neighbors that 
surpass a specified threshold θ are nullified, setting their values 
to zero. This modification results in a matrix that highlights only 
significant transitions. The detailed procedure is as follows: 

Nij
 MTM'

 = � 

0 if i = j
0 if Nij

 MTM > θ
Nij

 MTM    if i ≠ j and Nij
 MTM ≤ θ

(19) 

Upon eliminating the normal elements, the state matrix 
undergoes normalization, resulting in the formation of the 
Markov Transition Probability Matrix (MTPM), denoted as Pij. 
This matrix reflects the probability of transitioning from state i 
to state j. The formula for Pij.  is as follows: 

Pij = 
Nij

 MTM'

∑  N
j = 1 Nij

 MTM'
 − �1 + Nij

 θ�
(20) 

where Nij
 θ indicates the count of standard transition in row i that 

surpass the predefined threshold θ. 

Next, prominent probabilities Pij
'  are selected, representing 

latent anomalous state transitions, These anomalous state 
transitions are recorded in a set 𝐴𝐴 by the following equation: 

A = �(i, j) �Pij > 0� (21) 

Subsequently, in the discretized signal, based on the 
recorded state transitions in set A , moments indicating the 
imminent occurrence of anomalies are determined. For 
transitions from lower bin regions to higher bin regions, 
representing an increase in signal amplitude, these are markers 
of anomalies about to occur. Conversely, transitions in the 
opposite direction indicate that anomalies have already 
occurred and should be disregarded. This leads to the formation 
of an anomalous moment set T , which can be expressed as: 

T = �t � St = i, St + 1 = j, (i, j) ∈ A, i < j� (22) 

where T represents the set of anomalous moments that are about 
to occur. St is the signal state at time t. 

By mapping the moments in set T back to the corresponding 
time points in the original signal, the amplitudes of the next 
sampling point at these moments are recorded. These 
amplitudes form a preliminary set of anomalous amplitudes V, 
which can be denoted as: 

V = �x(t + 1) � t ∈ T� (23) 

Then, the newly defined threshold, 𝜏𝜏markov,is given by: 

τmarkov = μV + 3σV (24) 

where μV and σV represent the mean and standard deviation of 
the estimated set of anomalies, respectively. 

Finally, the STCLPR outlined in (4) can be improved by 
incorporating the Markov Latent Frequency Transition Peak 
Rate (MLFTPR) , as represented by: 

MLFTPR = 
1
M

� 𝟙𝟙{ 𝜏𝜏markov > Δx[n]
M − 2

n = 0

}

⋅ 𝟙𝟙{𝜏𝜏markov > Δx[n + 1]} (25)
The indicator function, denoted here by 𝟙𝟙, assigns a value of 

1 if its argument is positive, and 0 otherwise. Δx[n] represents 
the absolute difference between the signal 𝑥𝑥 and its next sample 
point. This function effectively acts as a binary switch, 
dependent on the positivity of its input. 
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Upon conducting a thorough analysis of the Markov Latent 
Frequency Transition Peak Rate (MLFTPR)  across the entire 
signal, the average value is computed to establish a detection 
threshold that identifies irregular boundaries and defines a 
robust window for capturing missed anomalies. Corresponding 
segments in the underlying signal are then modified to handle 
amplitude peaks. The objective is to mitigate the effects of 
anomalies, bolster signal reliability, and improve analytical 
effectiveness, while preserving the fundamental characteristics 
of the original signal. The following equations encapsulate 
these methods: 

 λ = 
1
K

�  
K − 1

k = 0

MLFTPR[k] (26) 

Ω = � k ∣∣ MLFTPR[k] > γ ⋅ λ � (27) 

ylim
i  = L ⋅ x�, i ∈ (k ⋅ M, k ⋅ M + h), ∀k ∈ Ω (28) 

The term ylim
i  demotes the limited signal amplitude 

perturbation, where Ω defines the boundaries of anomalies, γ 
acts as the averaging factor, and L sets the amplitude constraints. 
The average amplitude, x�, is computed over a segment of length 
M with a stride h. 

IV. EXPERIMENTAL VALIDATION

A. Test Rig Setup and Data Acquisition 
To validate the proposed methodology’s effectiveness, the 

bearing vibration dataset was collected using a test rig, as 
depicted in Fig. 1. This test rig includes a three-phase induction 
motor, a torque meter, a gearbox, bearing housings A and B, 
rotors, and a hysteresis brake. The experimental bearing used is 
a standardized NSK bearing (NSK 6205 DDU), featuring a ball 
diameter (d) of 7.90 mm, a pitch diameter (D) of 38.5 mm, 
contact degree angle (θ) of zero degrees, and nine (N) number 
of balls. Consequently, the shaft frequency (fs) was measured at 
50.17 Hz, the fundamental train frequency (FTF) at 19.94 Hz, 
and the ball pass frequency inner (BPFI) at 272.07 Hz, the ball 
pass frequency outer (BPFO) at 179.43 Hz, and the ball spin 
frequency (BSF) at 234.19 Hz. The vibration signal is collected 
at a sampling frequency of 25600Hz. 

Brake

Rotors (mass wheel)

Bearing 
housing 

B

Bearing 
housing 

A

Gearbox Torque 
meter

Motor 
(3 HP)

Current 
(Three-phase)

Motor & Brake 
control

Torque 
monitoring

Thermocouple

Accelerometer 
(x, y direction)

RPM 
monitoring

Load 
Controller

x

y
z

x
y

z

Figure 1. Experimental testing setup. 

B. Experimental Validation and Comparative Analysis 
The vibration signal illustrated in Fig. 2 exhibits random 

transient interferences. To effectively analyze this signal amid 
such noise, the employment of Discrete Wavelet Transform 
(DWT) as a preprocessing technique is selected. The DWT 
facilitates the decomposition of the signal while preserving its 
overall dynamics, as evidenced by the level 1 approximation 
coefficients shown in Fig. 2 (b). These coefficients demonstrate 
the retention of the signal's intrinsic features. Furthermore, the 
detailed coefficients at levels 1, 2, and 3, derived through the 
DWT, are presented in  Fig. 2 (c)-(d). 

Examining the high-frequency components at each level of 
the DWT reveals their sensitivity to rapid signal variations, 
which are crucial early indicators of potential significant events. 
Simultaneously, the low-frequency components provide 
insights into the fundamental structure and long-term trends of 
the signal. The application of low-pass filtering to the 
approximation coefficients enhances signal representation by 
eliminating minor perturbations. This process simplifies the 
signal's complexity and more accurately portrays its stable 
trends, as depicted in Fig. 3 (a) and Fig. 3 (b). 

(c) (d) (e)

(a) (b)

Figure 2. (a) Raw signal, (b) Level 1 approximation coefficient, (c) Detail 
coefficient (level 1), (d) Detail coefficient (level 2), and (e) Detail coefficient 

(level 3) in DWT. 

A comparison between the original and retrieved signals is 
presented in Fig. 3 (c). The retrieved signal efficiently 
eliminates noise and accentuates significant external 
interferences, thereby enhancing the representation of 
anomalous signal transitions. By focusing on critical 
information, this method significantly improves the accuracy of 
anomaly detection. Subsequently, the signal is segmented into 
distinct states using equations (16)-(20). As depicted in Fig. 3 
(d), this process results in discrete signals with clear interval 
distributions for both normal and noisy states. 
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(a) (b)

(c) (d)

Figure 3. (a) Low-pass filtered approximation, (b) Thresholded detail 
coefficients, (c) Raw and reconstructed Signals, (d) Equidistant signal 

discretization. 

To evaluate its effectiveness, the performance of the 
proposed method in monitoring signal transitions was 
compared with several established techniques, including Short-
Time Energy (STE), Short-Time Kurtosis (STK), and Short-
Time Zero Crossing Rate (STZCR), as illustrated in Fig. 4 (a)–
(d). 

The analysis reveals that the Short-Time Energy (STE) 
method, as depicted in Fig. 4 (a), which can find all the 
interference components, but there is still a small amount of 
interference. Similarly, the Short-Time Zero Crossing Rate 
(STZCR) approach, illustrated in Fig. 4 (b), fails to adequately 
differentiate transient noise interferences. The Short-Time 
Kurtosis (STK) method, shown in Fig. 4 (c), also encounters 
difficulties in recognizing interference components and is 
highly susceptible to significant noise from unaccounted signal 
elements. In contrast, the proposed MLFTPR, showcased in Fig. 
4 (d), excels in accurately detecting all transient noise 
disturbances, without being affected by other undetected signal 
aberrations. 

Fig. 5 provides a graphical representation of the frequency 
and probability distributions of Markov signals through dual 
heatmaps. In particular, Fig. 5 (a) presents the heatmap of 
Markov signal frequencies, illuminating the periodicity of state 
transitions. Here, intensely colored cells along the diagonal 
indicate a predominant persistence of states, signaling system 
resilience and the predictability of the signals. Bright spots off 
the diagonal represent state transitions, revealing the signal's 
dynamism and potential indicators of significant events or 
anomalies. Dark zones, bordered in white, represent rare or 
anomalous transitions, with the thickness of the borders 
correlating to the rarity of these occurrences. By modifying the 
heatmap to exclude high-frequency self-transitions on the 
diagonal and reduce off-diagonal high-frequency transitions, a 
normalized transition probability matrix is obtained, as 
displayed in Fig. 5 (b). This modification highlights lower-
frequency transitions, thereby enhancing the matrix's dynamic 
range. Consequently, this refined heatmap facilitates a more 
sensitive detection of subtle changes or transition patterns that 
might otherwise be overlooked in the frequency matrix. 

Combining Fig. 3 (d) and Fig. 5 (b), we can get a series of 
possible anomaly points. According to (24), we can get the real 
anomaly points. 

(a) (b)

(d)(c)

Figure 4. (a) STE, (b) STZCR, (c) STK, and (d) MLFTPR. 

(a) (b)

Figure 5. (a) Markov signal frequencies heat-map, (b) Scaled Markov signal 
probability heat-map. 

As previously discussed, the proposed MLFTPR metric has 
demonstrated efficacy in identifying irregularities associated 
with external transient noises. This method exhibits robustness 
against such disruptions, thereby affirming the strength of the 
vibration signal in resisting external transient impacts. 
Furthermore, the incorporation of an amplitude-limiting 
component mitigates potential amplitude interferences, thereby 
enhancing the accuracy of fault identification.    

The capability of this mechanism in controlling disturbance 
amplitudes is clearly illustrated in Fig. 6 (a), and Fig. 6 (b). 
Through the states in the transition matrix and the discretized 
signal, the moment preceding the occurrence of anomalies is 
estimated. Based on the corresponding position and amplitude 
in the original signal, a threshold 𝜏𝜏markov  is determined to 
distinguish between normal and anomalous behavior in low-
probability transitions.  

In the comparative case study, the Kurtogram [10] and 
Infogram [16] are employed as benchmark techniques. The 
analysis focuses on a raw bearing vibration signal, which is 
naturally susceptible to interference from external transient 
noise.. Various methods are implemented to mitigate post-
interference effects and restrict amplitude interference in this 
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signal. After post-processing, the signals undergo analysis 
through demodulation band selection and envelope analysis. 

(a) (b)

Figure 6. (a) Signals with interference, (b) Vibration signal with interference 
suppression. 

The results of the demodulation band selection for the 
original vibration signal are illustrated in Fig. 7 (a) and Fig. 8 
(a). Further analysis using Squared Envelope Spectrum (SES) 
[10] and Logarithmic Envelope Spectrum (LES) [16] are shown 
in Fig. 7 (b), Fig. 7 (c), Fig. 8 (b), and Fig. 8 (c). The Kurtogram 
identified a filtered central frequency and bandwidth of [400Hz, 
800Hz], while the Infogram method yields a different set, with 
a central frequency and bandwidth of [800Hz, 533.3333Hz]. A 
closer analysis of the envelope results in Fig. 7 (b) and Fig. 8 (c) 
reveals a notable discrepancy—the absence of the characteristic 
bearing frequency. This observation contrasts with theoretical 
predictions, where the bearing's characteristic frequency should 
be identified as fi = 272.07 Hz. 
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Figure 7. Raw signal affected by external transient noise interference: (a) 
Demodulation band determination via beta-Kurtogram, (b) Squared envelope 

spectrum, (c) Envelope spectrum in logarithmic scale. 
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Figure 8. Raw signal affected by external transient noise interference: (a) 
Demodulation band determination via Infogram, (b) Squared envelope 

spectrum, (c) Envelope spectrum in logarithmic scale. 

Fig. 9 (a) and Fig. 10 (a) demonstrate the effects of selecting 
various demodulation bands and conducting envelope analysis 

on signals after amplitude interference limitation [22] and 
interference suppression. In contrast, Fig. 9 (b), Fig. 9 (c), Fig. 
10 (b), and Fig. 10 (c) present envelope analyses conducted with 
the SES and LES methods. The derived parameters for the 
filtered central frequency and bandwidth are [1600Hz, 
1066.6667Hz] for the first set and [2400Hz, 1600Hz] for the 
second set.  

A thorough review of the envelope analysis results, depicted 
in Fig. 9 (b), Fig. 9 (c), Fig. 10 (b), and Fig. 10 (c), indicates a 
clear identification of characteristic frequencies, such as fi, 2fi, 
and 3fi𝑖𝑖

. These findings are crucial in substantiating the
effectiveness of the proposed method in monitoring signal state 
transitions, which is particularly relevant for bearing diagnostics 
environments with significant external noise challenges. 
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Figure 9. Signal after post-interference suppression and amplitude limitation: 
(a) Demodulation band determination via beta-Kurtogram, (b) Squared 

envelope spectrum, (c) Envelope spectrum in logarithmic scale. 
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Figure 10. Signal after post-interference suppression and amplitude limitation: 
(a) Demodulation band determination via Infogram, (b) Squared envelope 

spectrum, (c) Envelope spectrum in logarithmic scale. 

V. CONCLUSION 
This research introduces the Markov Latent Frequency 

Transition Peak Rate (MLFTPR) methodology, designed to 
overcome diagnostic challenges caused by environmental 
disruptions in rolling bearings. By vigilantly tracking state 
transitions and identifying anomalous signals, MLFTPR 
enhances fault diagnosis in noise-cluttered environments. Its 
amplitude interference control improves the accuracy of 
demodulation band selection, thus boosting diagnostic 
precision. Experimental results demonstrate MLFTPR's 
resilience against transient noise, proving it superior to 
traditional techniques. In subsequent work, the effect of the 
number of bins in (15) on the result can be discussed. 
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