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Abstract— In real-world scenarios, the performance of rolling
bearings can be significantly affected by frequent environmental
disturbances, including high-energy fluctuations, transient noises,
unintended collisions, or sudden variations in loading. These
disturbances have the potential to obscure signs of damage,
posing a challenge to the identification of failures. Traditional
techniques for selecting demodulation band encounter challenges
due to inherent complexity and parameter sensitivity. These
methods, which heavily rely on postprocessing signal analysis
involving interference components, prove ill-suited for complex
scenarios, especially faced with multivariate random pulse noise.
To address these challenges, this article proposes a method for
Markov modeling of signal condition transitions to mitigate
transient noise interference at its source. This method aims
to improve insensitivity for external transient noise, enabling a
more accurate and reliable selection of demodulation bands. The
proposed method employs a signal transition model grounded in
a Markov transition matrix, coupled with wavelet transforms and
reconstruction. It improves the identification of anomalous signal
components and leverages the transition matrix to track temporal
state changes. In addition, an amplitude interference-limiting
mechanism is designed to identify and mitigate transient noise
that may adversely affect the demodulation band selection pro-
cess. The study’s results demonstrate that this mechanism allows
typical Kurtogram techniques to accurately identify bearing
fault-characteristic bands, and the experimental results validate
the effectiveness of the proposed methodology for fault diagnosis
of rolling bearings.

Index Terms— Anomaly detection, fault diagnosis, rolling
bearings, transient noise, vibration signal.
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I. INTRODUCTION

ROLLING bearings plays a crucial role as components
in various rotating systems, including wind turbines,

electric motors, and machine tools. The variety of speeds,
loads, and environmental disturbances they endure can result
in damage, potentially leading to system downtime, reduced
reliability, and economic losses [1].

Currently, there are two main approaches to diagnose
rolling bearing faults: vibration signal processing [2] and
deep learning [3]. Deep learning methods utilize general
network architectures, including convolutional neural networks
(CNNs) [4], [5], residual networks (ResNets) [6], Trans-
formers [7], and others [8], [9], to extract intricate patterns
and nonlinear correlations not easily observed in vibrations.
However, these methods still face challenges, including but not
limited to dependence on extensive datasets, model opacity,
and high-computational demands. In contrast, vibration sig-
nal processing methods focus on the inherent characteristics
of bearing vibration, analyzing potential features hidden in
the vibrations that indicate bearing degradation performance.
By revealing typical bearing faults in the time domain,
frequency domain, and even time–frequency domain, these
methods benefit from the intuitiveness and interpretable nature
of vibration signal processing. In addition, they are capable
of delivering robust fault diagnosis, particularly in scenarios
where massive datasets are not available.

In the field of bearing fault diagnosis, the detection of
damage signals, such as those from fatigue, cracks, and wear,
is crucial, as they appear as repetitive peaks in the time
domain and distinct frequencies in the frequency domain,
referencing the specific bearing components [10]. Identifying
these fault-characteristic frequencies amid noise is essential.
Spectral kurtosis (SK) [11] is a key advancement for analyzing
vibration signals, with methods, such as the Kurtogram by
Antoni and Randall, for visualizing SK, although initially
limited by computational demands. The development of the
Fast Kurtogram [12] improved on this with a faster processing
method without sacrificing accuracy, enhancing its industrial
utility. Alternative approaches include Lei et al.’s [13] wavelet
packet transform, improving time–frequency analysis, and
Li et al.’s [14] multiscale clustering for optimized signal
feature analysis.

However, the current methods that utilize bandwidth divi-
sion based on the SK are overly sensitive to external
disturbances. This sensitivity results in difficulty distinguishing
between faults and external transient noise, potentially leading
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to misdiagnosis. Furthermore, these techniques may not effec-
tively adapt to rapid changes in complex conditions, which
heightens the risk of false alarms or overlooked diagnoses. To
tackle these challenges and combat issues with non-Gaussian
noise and its high-energy pulses, Barszcz and JabŁo’nski [15]
proposed the Kurtogram algorithm, which focuses on cyclo-
stationarity rather than impulsiveness, resulting in more stable
outcomes. In a similar vein, Borghesani et al. [16] forwarded
a technique analyzing the amplitude peaks of the squared
envelope spectrum (SES) for frequency band selection, based
on the ratio of cyclic contents (RCCs), which offers refined
precision. Antoni [17] introduced the SES Infogram, using
negentropy to improve kurtosis plots, enabling better analysis
of noisy signals. Moshrefzadeh and Fasana [18] developed
the Autogram, which assesses the kurtosis of autocorre-
lation functions and combined it with the combined SES
(CSES) metric to enhance detection accuracy in the presence
of noise and non-Gaussian features. Finally, Mauricio and
Gryllias [19] presented the IESFOgram, a method that focuses
on cyclospectral correlation to prioritize and integrate the
most informative frequency bands, culminating in the CIES
for improved detection of bearing faults. For the optimization
of demodulation frequency bands, Wang et al. [20] presents
Psscgram, a fault diagnosis method that improves frequency
band division models. Utilizing AR power spectrum and NE,
it robustly extracts fault-related frequency bands and demon-
strates its effectiveness with both simulated and experimental
signals.

The prior approaches for demodulation band selection
encounter challenges due to inherent complexity and sensitiv-
ity to parameters. These approaches predominantly depend on
intricately crafted postprocessing signal strategies that encom-
pass interference components. Such strategies may prove
incapable of yielding effective results for complex scenarios,
particularly when confronted with multivariate random pulse
noise. To tackle these issues, this article proposes a novel
approach aimed at suppressing transient noise interference
at its source. The proposed method thoroughly explores the
intrinsic characteristics of nonstationary signals in bearings
when confronted with transient noise interference. Its objec-
tive is to enhance insensitivity to external transient noise,
facilitating a more precise and dependable selection of demod-
ulation bands. Initially, the proposed method integrates a
signal transition model based on a Markov transition matrix,
in conjunction with wavelet transforms and reconstruction.
This combination enhances the identification of anomalous
signal components and utilizes the transition matrix to track
temporal state changes. In addition, a mechanism for limiting
amplitude interference is devised to recognize and alleviate
transient noise that could adversely impact the process of
demodulation band selection. Subsequently, this mechanism
enables typical Kurtogram techniques to accurately pinpoint
bearing fault-characteristic bands. Finally, the effectiveness of
the method in detecting and diagnosing bearing faults under
transient noise interference conditions is validated through
experimental signals.

The research framework is as follows. First, Section II
reviews the fundamental theory of identifying abnormal

patterns or features in signals. This is followed by Section III,
which introduces the proposed Markov modeling for signal
condition transitions. In Section V, a case study for bear-
ing diagnosis under transient noise interference conditions is
presented. The research concludes with Section VI, which
summarizes the key results and provides insights into the
implications of the proposed method for bearing diagnosis.

II. RELATED THEORY

This section revisits the identification of abnormal patterns
or features within signals, emphasizing factors, such as local
peak ratios, energy levels, and zero-crossing rates. Noteworthy
techniques, including short-time condition local peak ratio
(STCLPR) [21], short-time energy (STE) [22], short-time kur-
tosis (STK) [23], and short-time zero-crossing rate (STZCR)
[22], [24], have been developed for capturing sharp peaks in
signals.

Examining a real-world discrete signal, such as a time
sequence denoted by [xn], where n ranges from 1 to N ∈ N,
representing the sample number. The signal can be expressed
as follows:

x f [m] = x[m + f · h] · w[m] (1)

where m denotes the time index, f is the frame index, and
h represents the sliding frame length. The window function,
typically a rectangular window denoted as w, ensures uniform
processing weight for frame samples during analysis.

Subsequently, the signals within each sliding window
undergo local peak detection. The identification of local peaks
relies on a specific criterion, whereby a sample is designated
as a peak only if its value surpasses that of its neighboring
sample. This criterion can be calculated as follows:

x[m] − x[m − 1] > 0
x[m + 1] − x[m] ≤ 0. (2)

Local peaks, which signal critical variations, are identified
by evaluating both the amplitude of the signal and its rate
of change. Relying solely on amplitude, however, may lead
to overlooked variations in the rate. In particular, in cases of
transient or non-Gaussian noise, employing a new threshold,
denoted as md , can enhance the detection of local peaks,
assist in monitoring signal condition transitions, and accurately
pinpoint anomalous elements

x[m] − x[m − 1] > md

x[m + 1] − x[m] ≤ md . (3)

A filtering procedure enables the calculation of the total
number of conditional local peaks (denoted by Np) within a
sliding window. Subsequently, the STCLPR is established as
the ratio of this total number of local peaks to the total number
of sampled points in the window

STCLPR =
Np

M
(4)

where M represents the length of the window function.
The determination of local peak density within each sliding

window is achieved through the application of (4). This metric
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objectively quantifies abnormal signal variation within the
specified window range, thereby effectively capturing the local
characteristics of the signal.

III. MARKOV MODELING FOR SIGNAL CONDITION
TRANSITIONS

The accuracy of STLPR is significantly reliant on the
threshold md . Although md plays a crucial role in ensuring
accurate detection, the thresholds based on the aforementioned
methods (refer to Section II), which rely solely on manual
selection, may lead to inconsistent performance. Given that
md directly influences the trade-off between false alarms and
missed detections, adopting a dynamic adjustment approach
for this threshold becomes imperative. This is especially
crucial in real-world scenarios where signals are susceptible
to interference from random transient or non-Gaussian noise.
To resolve these issues, a Markov modeling for signal con-
dition transitions is proposed. This approach involves three
essential modules, signal preprocessing analysis, Markov mod-
eling for monitoring temporal state changes, and suppressing
interference to distinguish signal types and sources.

To begin with, the Daubechies wavelet transform (DWT)
[25] is employed to mitigate the impact of low-SNR envi-
ronmental noise. This step is crucial in preventing the
misclassification of high-amplitude random peaks as notewor-
thy signal signatures in the proposed method. For a given
vibration signal, denoted as x(t), it can be decomposed into a
set of detail coefficients (cD j,k) and approximation coefficients
(cA j,k)

x(t) =
+∞∑

k=−∞

cA j,kφ j,k(t)+
+∞∑

k=−∞

cD j,kψ j,k(t) (5)

where j represents the scale factor of the wavelet and k
indicates the wavelet’s shift factor determining its central
position. φ j,k is the wavelet function, and ψ j,k represents the
scale function.

The wavelet transformation operates through a hierarchical
decomposition, methodically exposing features across various
frequency bands and levels. This involves calculating succes-
sive approximation coefficients and then decomposing these
coefficients into higher order and finer detail coefficients.
The discrete wavelet transform (DWT) can be expressed
mathematically as follows:

cA j,k =
∑

n

h[n − 2k]x j−1,n

cD j,k =
∑

n

g[n − 2k]x j−1,n (6)

where h[n] and g[n] represent the low-pass and high-
pass filters, respectively. The variable x j−1,n corresponds to
the low-frequency component of the current approximation
coefficient.

Following coefficient acquisition, thresholding and filter-
ing processes are applied. Approximate coefficients cA′ are
obtained via a Butterworth low-pass filter, and it can be

calculated as follows:

cA′n =
M∑

i=0

bi · cAn−i −

N∑
j=1

a j · cA′n− j (7)

where bi and ai are the feedforward and feedback coefficients
of the filter, respectively. j starts from 1, because a0 is
typically normalized to 1.

The detail coefficients cD′ undergo essential soft threshold-
ing for signal characteristic extraction, as outlined below

cDi
′
=


0, if |cDi | ≤ ε

cDi − ε, if |cDi | > ε

cDi + ε, if |cDi | > ε.

(8)

The threshold ε is defined as a fraction of the maximum
value of cDi and can be represented as follows:

ε = k ·max(cDi ). (9)

The signal is constructed using the inverse DWT (IDWT).
In addition, this signal reconstructed following wavelet decom-
position successfully mitigates noise while maintaining fidelity
in comparison with the original signal. The calculation is
expressed as follows:

x̂(t) =
∞∑

j=−∞

(
cA′j,kφ j,k(t)+

∞∑
k=−∞

cD′j,kψ j,k(t)

)
(10)

where φ j,k and ψ j,k denote the wavelet function and scale
function, respectively.

Following that, a Markov model [26] is implemented to
track temporal state changes for the preprocessing of signals
after applying DWT. For the purpose of this investigation,
a first-order Markov model is employed, which can be
represented by the following formula:

P(xi | xi−1, xi−2, . . . , x1) = P(xi | xi−1) (11)

where xi−1 denotes the current state, while xi represents the
subsequent state.

In a Markov chain, as expressed in (11), state transitions
are determined at each step through a probability distribution,
where the current state is influenced by the preceding one.
To assess this influence objectively, an indicator, such as
the transition probability matrix (TPM), is employed. This
matrix signifies the conditional probabilities of state transi-
tions. Notably, given the presence of n possible states at any
given moment, there exist n2 potential transition scenarios.
The matrix is calculated as follows:

MT P M =



p11 p12 · · · p1 j · · ·

p21 p22 · · · p1 j · · ·

...
...

...

pi1 pi2 · · · pi j · · ·

...
...

...
... .

. (12)

The current methods commendably enhance signal compa-
rability by sorting amplitudes and evenly distributing signals
across fixed time intervals, thereby facilitating more coherent
statistical analysis. However, these strategies often overlook
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the innate temporal sequencing of signals. This oversight can
result in the exclusion of pivotal, time-sensitive information
and a heightened susceptibility to noise disruption. To address
these limitations, this study adopts a new method of Markov
signal discrete modeling. The signals obtained through wavelet
reconstruction, as referred in (10), effectively differentiate
atypical from typical states by grouping magnitudes within
a certain range into the same interval denoted as j and
designating them as signal states Si . This approach enables
the entire complex continuous signal into a simplified discrete
framework (10) without losing the state transitions contained
within the original time series. A designated formula, pre-
sented in (13), is used to convert signal magnitudes to interval
index markers

Si =

{
j, xn[i] ∈ S j

j, xn[i] = max(xn), j = nbin − 1.
(13)

The original signal is partitioned into distinct states, and the
S j of each state is determined by the following formula:

S j =
[
min(xn)+ ( j − 1) ·1,min(xn)+ j ·1

]
1 =

max(xn)−min(xn)

nbin
(14)

where1 represents the uniform interval length for partitioning,
whereas nbin indicates the predetermined number of states,
exerting a direct influence on the density of states after
discretization.

After obtaining state sequences, a statistical analysis is
conducted to determine the frequency of transitions between
states. This process involves using the Markov transition
matrix (MTM) to create a transition frequency matrix referred
to as N MTM

i j

N MTM
i j =

N−1∑
n=1

δ(Sn = i, Sn+1 = j) (15)

where δ(x, y) is the Kronecker delta function, yielding 1 when
x = y and 0 otherwise. N represents the length of the state
sequence S.

Thereafter, the state matrix undergoes normalization, yield-
ing the Markov TPM Pi, j . This matrix indicates the probability
of transitioning from state i to state j

Pi j =
N MTM

i j∑N
j=1 N MTM

i j

. (16)

Furthermore, matrix normalization is critical after calcu-
lating Markov transition probabilities to ensure the elements
sum to one. In this study, signals were discretized using a
fixed number of intervals (nbin = 10). The interval boundaries
with the greatest probability deviation are identified as critical
regions for pattern transitions, and their associated probabili-
ties are represented by Pm . The probability of overall extreme
value transfer, denoted as Pt , can be computed as follows:

Pt =
∑

m

Pm . (17)

Thus, the new threshold θMarkov can be determined as
follows:

θMarkov =
k
Pt
× x(t)max (18)

where x(t)max represents the maximum amplitude of the
absolute value of the signal and k is a coefficient.

The original SRLPR in (4) can be enhanced by integrat-
ing the proposed short-time Markov peak rate (STMPR) as
follows:

STMPR =
1
M

M−1∑
n=1

H(x[n] − x[n − 1] − θMarkov)

· H(x[n] − x[n + 1] − θMarkov) (19)

where H is the Heaviside step function, which has a value of
1 when the expression inside it is positive; otherwise, it is 0.

Algorithm 1 Proposed Markov Modeling Algorithm Tracks
Signal Condition Transitions
Require: Signal sequence x[m], threshold θMarkov
Ensure: STMPR

Determine frame length M
Initialize peak counter Np ← 0, start and end indices
start ← 1, end ← M
while end ≤ length(x) do

for m = 0 to M − 1 do
Initialize current frame peak counter Pc ← 0
for n = start to end do

if n > 1 and n < length(x) then
if x[n] > x[n − 1] + θMarkov and x[n] > x[n +
1] + +θMarkov then

Pc ← Pc + 1
end if

end if
end for

end for
Np ← Pc + Np, end ← end + 1, start ← start + 1

end while
STMPR ← Np/M
return STMPR

After a comprehensive analysis of the entire signal’s
STMPR, an average threshold is established to identify abnor-
mal frames accurately. The sections in the original signal
corresponding to these frames are subsequently modified to
restrict amplitude spikes. The objective of this procedure is
to minimize the impact of anomalies and improve signal
consistency, thereby facilitating more effective analysis, all
while preserving the fundamental traits of the core signal.
These processes can be calculated as follows:

µ =
1
K

K−1∑
k=0

STMPR[k] (20)

B = {k | STMPR[k] > 2µ} (21)

yi
ais = L · x̄, i ∈ [k · M, k · M + h) ∀k ∈ B (22)

where yi
ais represents the amplitude interference-imitating sig-

nal. B denotes the initial boundaries for anomalies, and L is
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Fig. 1. SpectraQuest bearing diagnostics and prognostics simulator.

Fig. 2. (a) Raw signal. (b) Level-1 approximation coefficient in DWT.

the coefficient used for amplitude limitation. x̄ represents the
mean amplitude of the signal, while M and h denote the frame
length and frame shift, with the typical values of 256 and 128,
respectively.

IV. TEST RIG AND DATA OVERVIEW

In this investigation, a bearing diagnostics and prognostics
simulator provided by SpectraQuest Inc. served as a crucial
tool. The test rig, illustrated in Fig. 1, consists of an ac
motor, hydraulic system, test bearing, accelerometers, and
other components. Vibration measurement is conducted using
one horizontally positioned PCB 352C04 accelerometer on
the side and one vertically positioned accelerometer at the
top. The investigation employed a single-row deep groove ball
bearing with nine rolling elements, each having a diameter of
7.94 mm and a pitch diameter of 38.51 mm. The vibration
signals are analyzed under constant rotating speed conditions,
with a sampling frequency set at 51 200 Hz.

V. EXPERIMENTAL VALIDATION

In this section, the effectiveness of the proposed Markov
modeling for signal condition transitions is validated using
a vibration signal with random transient interference for
analysis.

The vibration signal, as shown in Fig. 2 (a), includes several
random external transient interferences. For a comprehensive
analysis of the vibration signal amid environmental noise,
applying a preprocessing method, such as the DWT, is recom-
mended. According to (5), the signal can be decomposed to
maintain the signal’s global dynamics, and the level-1 approx-
imation coefficient can be obtained, depicted in Fig. 2(b).

Furthermore, the results of the detail coefficients for levels
1–3 in the DWT are presented in Fig. 3. The high-frequency

Fig. 3. Detail coefficient across levels 1–3 in DWT. (a) Level 1 cofficient
in DWT. (b) Level 2 cofficient in DWT. (c) Level 3 cofficient in DWT.

Fig. 4. (a) Low-pass filtered approximation coefficient. (b) Zoomed-in region
from (a).

Fig. 5. (a) Thresholded detail coefficients. (b) Zoomed-in region from (a).

Fig. 6. (a) Raw signal. (b) Retrieve signal.

signal components, as depicted for each level, capture rapid
changes, providing crucial early warnings for significant
events. Concurrently, the low-frequency components illustrate
the signal’s fundamental structure and long-term trends. The
application of low-pass filtering to approximation coefficients
aids in clarifying signal representation by eliminating minor
disturbances, thereby reducing complexity. Consequently, the
long-term stable trend of the signal is enhanced, and minor dis-
turbances are effectively suppressed, as demonstrated in Fig. 4.

In accordance with (9) and (10), the thresholded signal,
as illustrated in Fig. 5, can be obtained. This process effec-
tively minimizes noise in detail coefficients while concurrently
preserving significant features in the signal.

From (10), the comparison between the original and
retrieved signals is illustrated in Fig. 6. The retrieved signal,
shown in Fig. 6(b), effectively eliminates noise while empha-
sizing significant external interferences for precise anomaly
signal transition. This process enhances accuracy by mak-
ing crucial information more prominent and facilitates the
detection of potential anomalies.
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Fig. 7. (a) Equidistant signal discretization. (b) STZCR. (c) STE.
(d) STCLPR. (e) STK. (f) STMPR.

Next, the retrieved signal should be partitioned into distinct
states according to (14)–(16). The results are illustrated in
Fig. 7(a), where the discretized signals clearly display dis-
tribution intervals for both normal and noise-affected signals.

To evaluate the effectiveness of the proposed method in
tracking signal condition transitions, various existing methods,
including STCLPR, STE, STK, and STZCR, are performed for
comparative analysis. The results are presented in Fig. 7. The
STZCR method, for instance, is unable to detect interference
transient noise, as illustrated in Fig. 7(b). The STE and
STCLPR methods, displayed in Fig. 7(b) and (c), respectively,
both only detect two interference components, missing other
components within the signal. Though STK, represented in
Fig. 7(e), detects some interference components, it is vulnera-
ble to strong interference from unidentified signal elements.
In contrast, the STMPR methodology exhibits impressive
performance. It consistently and accurately identifies all inter-
ference transient noises, with no discernible impact from any
other unknown interferences.

Upon numbering each discretized sampling point, the
Markov transition probabilities for the entire signal sequence
can be computed using (1). Subsequently, a matrix illustrating
the transition probabilities between signal states is presented
in Fig. 8(a). This heat map, depicted in Fig. 8(a), facilitates
a visual analysis of state transitions and provides insights
into the intrinsic structure of the signal through the Markov
transition probabilities. The areas on the heat map that appear
brighter represent zones with higher transition probabilities,
indicating that state changes occur more frequently there.
When the diagonal looks particularly bright, it signifies sta-
bility, emphasizing that the signal is both predictable and
continuous. On the other hand, if the rows have just a few very
bright spots, this implies that certain state transitions are more
likely and could indicate a higher chance of unusual activity.
It is important to note, however, that these specific transitions
occur with lower frequency within the comprehensive transi-
tion frequency matrix. This characteristic precisely facilitates
the objective differentiation of various signal transition modes.

Finally, the proposed method effectively enables the identi-
fication of signal condition transitions across multiple states,
as demonstrated by the data presented in Fig. 7(b). An analysis
of this figure indicates that the peak rate measure of the signal

Fig. 8. (a) Markov signal probability heat map. (b) Vibration signal
with interference suppression. (c) Zoomed-in view of amplitude interference
limiting.

Fig. 9. Raw signal with interference from external transient noise.
(a) Demodulation band selection through beta-Kurtogram. (b) SES. (c) LES.

reliably detects anomalies associated with external transient
noises. The methodology’s resilience to such disturbances
is exhibited in Fig. 8(b), illustrating the vibration signal’s
immunity to external transients. To further mitigate the issue of
amplitude interference, a mechanism has been established to
limit the amplitude of such disturbances. This is accomplished
by computing the mean absolute value across all signals
and subsequently capping any excessive amplitude at 80%.
In addition, the method involves widening the margin around
the anomaly by several units in either direction, thereby
facilitating more precise analysis. This technique is essential
as it preserves the fidelity of the standard signal pattern
while ensuring that anomalous signals are not disregarded.
This is critical for improving the accuracy of fault diagnosis.
The effectiveness of this amplitude interference limitation
mechanism is illustrated in Fig. 8(c).

In this study, the benchmark methods, Kurtogram and
Autogram, are employed for a comparative analysis. The
raw bearing vibration signal, susceptible to interference from
external random transient noise components, and the signal
after postinterference suppression and amplitude interference
limiting are used for validation through demodulation band
selection and envelop analysis.

The demodulation band selection results for the raw signal
are depicted in Figs. 9(a) and 10(a), while their corresponding
envelop analyses, utilizing the SES and logarithmic envelope
spectrum (LES), are provided in Figs. 9(b) and (c), and
10(b) and (c). The filtered central frequency and bandwidth are
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Fig. 10. Raw signal with interference from external transient noise.
(a) Demodulation band selection through Autogram. (b) SES. (c) LES.

Fig. 11. Signal postinterference suppression and amplitude interference
limiting. (a) Demodulation band selection through beta-Kurtogram. (b) SES.
(c) LES.

Fig. 12. Signal postinterference suppression and amplitude interference lim-
iting. (a) Demodulation band selection through Autogram. (b) SES. (c) LES.

specified as [18800, 800 Hz] and [21333.3333, 8533.3333 Hz].
Analyzing the envelop analysis results in Figs. 9(b) and (c),
and 10(b) and (c), no bearing characteristic frequency is
identified, in contrast to the theoretical calculation of fi =

81.45 Hz.
Conversely, Figs. 11(a) and 12(a) depict the results of

demodulation band selection and envelope analysis for the sig-
nal subsequent to postinterference suppression and amplitude
interference limiting. Meanwhile, the corresponding enve-
lope analyses, utilizing the SES and LES, are presented in
Figs. 11(b) and (c), and 12(b) and (c). The filtered central
frequency and bandwidth are specified as [2000, 800 Hz] and
[9600, 6400 Hz].

Upon analyzing the envelope analysis results in
Figs. 11(b) and (c), and 12(b) and (c), characteristic
frequencies, such as fi , 2 fi , 3 fi , and 4 fi , are easily
identified. The validation of the proposed Markov modeling
for signal condition transitions is crucial for bearing diagnosis,
particularly in the presence of external interference scenarios.

VI. CONCLUSION

This article proposes a novel approach to enhance the
diagnostic performance of rolling bearings in real-world sce-
narios by effectively addressing challenges posed by frequent
environmental disturbances. The proposed method focuses on
suppressing transient noise interference at its source, aiming to
improve the insensitivity to external disturbances and conse-
quently enhance the accuracy and reliability of demodulation
band selection. By incorporating a signal transition model
based on a Markov transition matrix, coupled with wavelet
transforms and reconstruction, the method demonstrates an
improved identification of anomalous signal components and
the ability to track temporal state changes. Furthermore, this
article introduces an amplitude interference-limiting mecha-
nism designed to identify and mitigate transient noise that may,
otherwise, adversely affect the demodulation band selection
process. Through rigorous experimentation, the study’s results
indicate that this mechanism enables typical Kurtogram tech-
niques to accurately identify bearing fault-characteristic bands.
The validation of the proposed methodology for fault diagnosis
of rolling bearings underscores its effectiveness in overcoming
challenges associated with complex scenarios and multivariate
random transient noise.
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