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ABSTRACT ARTICLE HISTORY
The timely identification and diagnosis of defects in Steel Wire Rope Received 2 April 2025
(SWR) is increasingly critical for ensuring structural integrity, opera- Accepted 25 July 2025

tional safety, and maintenance efficiency across diverse industrial KEYWORDS
applications, including elevators, mining equipment, bridges, and Steel wire rope; non-
cable-supported structures where unexpected failures could lead to destructive testing; local
catastrophic consequences. Current methodologies face significant fault detection; magnetic
challenges in detecting low-amplitude faults due to lift-off effects flux leakage; condition
and complex noise environments, while existing localization frame- monitoring

works struggle to balance detection accuracy with false omission

rates. This research proposes a novel Multi-channel Fusion Scale

Transformation (MCFST) approach utilizing magnetic flux leakage

signals to address the challenges in detecting and localizing Local

Faults (LFs), particularly those with diminished amplitude due to

inherent weakness or lift-off effects amid comparable ambient

noise. The proposed MFST develops a three-fold framework: a

morphological-based signal enhancement technique that amplifies

LF signals while preserving their essential characteristics, a Channel

Shuffle and Fusion paradigm for ambient noise mitigation, and a

computationally efficient localization framework combining tem-

plate matching algorithms with LF-specific luminance characteris-

tics. Experimental results demonstrate superior performance in

detecting and precisely localizing LFs under challenging conditions,

offering substantial improvements over existing approaches in

both detection accuracy and computational efficiency..

1. Introduction

Steel Wire Rope (SWR) has established itself as an indispensable structural component
across a wide spectrum of industrial applications, including but not limited to elevators,
cranes, bridges, and mining operations, primarily owing to its exceptional combination
of mechanical properties such as high tensile strength, operational flexibility, and long-
term durability. Nevertheless, during routine service conditions, these wire ropes are
consistently subjected to numerous deteriorating factors, including sustained cyclic
loading, environmental corrosion, and mechanical wear, which collectively contribute
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to the initiation and propagation of Local Flaws (LFs) within the rope structure [1].
When such structural imperfections remain undetected and continue to develop, they
can ultimately precipitate catastrophic failure events, thereby not only jeopardising
operational safety but also potentially incurring substantial economic losses through
equipment damage and operational downtime [2]. Consequently, the implementation of
systematic inspection protocols and the development of advanced detection methodol-
ogies for SWR defects have become increasingly critical in maintaining the operational
integrity and safety standards of modern industrial systems.

The evolution of non-destructive testing (NDT) for wire ropes represents a critical
progression in structural health monitoring, beginning with rudimentary manual visual
inspection [3-5] and subsequently evolving to incorporate more sophisticated meth-
odologies such as acoustic signal analysis [4,6-11] and machine vision techniques [5,12-
14], primarily due to their non-invasive characteristics and superior accuracy potential.
Within the acoustic emission domain, a significant breakthrough emerged when Schaal
et al. [15] introduced an innovative damage detection algorithm founded on the Hilbert
transform of guided ultrasonic waves, which consequently enables automated time-of-
flight analysis for precise defect localisation in multi-wire cables through distinctive wave
packet identification. Furthermore, their comprehensive study not only assessed second
harmonic waves but also conducted extensive amplitude comparisons against a hybrid
finite-boundary element model, with their findings subsequently validated through
rigorous laboratory experiments on both single and multi-wire systems.
Complementing this research, Raisutis et al. [16] developed a sophisticated ultrasonic-
guided wave (UGW) method that seamlessly integrates semi-analytical finite element
(SAFE) modelling with 3D FE analysis to thoroughly investigate wave propagation
modes, dispersion curves, and excitation regions in multi-wire steel ropes with polymer
cores. Although their experimental validation demonstrated remarkable capability in
identifying specific defective strands within the rope’s interior — a crucial aspect for
assessing structural integrity under operational conditions - it is important to note that
acoustic-based methods generally remain susceptible to environmental noise interfer-
ence and frequently necessitate complex signal processing algorithms to reliably differ-
entiate damage-related signals from background interference.

Furthermore, significant advancements in machine vision technology have substan-
tially enhanced defect detection capabilities in industrial applications. Zhang et al. [17]
pioneered a sophisticated machine-vision methodology that incorporates a segmentation
template specifically designed to accommodate the intricate structural characteristics of
steel wire ropes. This innovative approach successfully segments individual strands even
under severely challenging industrial conditions, including the presence of lubricants, oil
contamination, and variable illumination environments. Moreover, their research intro-
duced a comprehensive defect detection framework that strategically utilises spatiotem-
poral grey sample sets for dynamic background modelling, consequently achieving
remarkable accuracy and environmental adaptability for fracture detection in complex
industrial settings. Building upon these developments, Huang et al. [18] systematically
integrated surface image analysis with automated visual inspection - enhanced by
a convolution neural network framework - to mitigate the subjectivity inherent in
manual feature extraction. Their computer vision system not only demonstrated superior
accuracy metrics but also achieved substantial improvements in processing efficiency
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compared to conventional methodologies, thus establishing the considerable potential of
automated visual technologies in industrial non-destructive testing applications.
Nevertheless, it is crucial to acknowledge that vision-based methodologies remain fun-
damentally constrained by line-of-sight limitations and may exhibit reduced effectiveness
in identifying internal or subsurface structural damage.

Given these inherent limitations in both acoustic and vision-based inspection techni-
ques, particularly in challenging environmental conditions and internal defect detection
scenarios, there has been a significant shift towards the adoption of magnetic flux leakage
(MFL) testing [19-21], which offers distinct advantages in comprehensively detecting
both surface and subsurface defects. However, the efficient processing and systematic
analysis of the substantial data volumes generated by MFL systems has emerged as
a significant technical challenge-one that machine learning approaches are particularly
well-positioned to address [7,22-24]. In this domain, Kim et al. [25] successfully devel-
oped an integrated approach that combined MFL signal analysis with convolution neural
networks (CNNs) to achieve accurate defect recognition, drawing on the well-established
effectiveness of CNNs in feature extraction and classification by utilising both time and
frequency domain analyses. Subsequently, Yi et al. [26] made substantial contributions to
the field by advancing the integration of spectral-normalised neural Gaussian processes
with GoogLeNet to enhance defect detection in steel wire ropes; their method incorpo-
rated uncertainty quantification via spectral normalisation and Gaussian process layers
to cater to safety-critical applications. This sophisticated approach transformed 1D
magnetic flux leakage signals into 2D Gramian angular field images, delivering state-of-
the-art performance in defect classification and out-of-distribution detection, as con-
firmed by careful ablation studies. Furthermore, Liu and Chen [27] employed a machine
learning strategy that coupled MFL signal analysis with 1D CNNs - alongside Haar
wavelet denoising and feature normalisation — to reach a testing accuracy of 98%,
outperforming six traditional machine learning models in quantitative defect recognition
while also highlighting limitations and suggesting future research directions. Liu et al.
[28] introduced a hybrid conditional kernel SVM model, which achieved 91.7% classi-
fication accuracy and the shortest runtime among 12 machine learning models for wire
rope defect recognition. Building upon these advances, Zhang et al. [29] proposed
a quantitative identification method for detecting internal and external broken wires in
steel wire ropes using continuous wavelet transform (CWT) and CNN, which automates
fault information extraction from time-frequency images of magnetic flux leakage sig-
nals. The method eliminates complex signal processing and significantly improves
detection accuracy and recognition performance compared to traditional methods.
Similarly, Liu et al. [30] developed an MFL wire rope defect detection method that
integrates an improved Hilbert transform with a long short-term memory (LSTM) neural
network, achieving higher classification accuracy and faster runtime for multiple defect
types under varied conditions.

Despite these significant technological advancements, machine learning meth-
odologies continue to be constrained by the availability and quality of training
datasets. Consequently, the transformation of signals obtained from MFL into
images for subsequent analysis through digital image processing techniques
[31,32] has progressively emerged as a predominant strategy for enhancing detec-
tion accuracy and operational flexibility. In this context, Zheng and Zhang [33]
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developed an innovative unsaturated magnetic excitation-based MFL device for wire
rope inspection, utilising pseudo-colour imaging and maximum modulus localisa-
tion to enhance broken wire detection accuracy. Their methodology, which system-
atically extracts colour and texture features from MFL images, demonstrated
superior portability and recognition rates compared to traditional systems, effec-
tively reducing errors through sophisticated image enhancement techniques.
Furthermore, Zhou et al. [34] engineered an integrated signal-processing method
that transforms multichannel MFL signals - collected via Hall sensor arrays — into
images, subsequently applying digital image processing techniques such as oblique-
directional resampling and median filtering to suppress strand and shaking noise.
This comprehensive approach effectively mitigates signal attenuation and leverages
multichannel fusion for noise-resilient fault diagnosis, thereby enhancing LF detec-
tion and localisation accuracy. Additionally, Liu et al. [35] implemented an
advanced morphological image processing technique to convert MFL signals into
images and suppress shaking noise through detailed analysis of lift-off distance and
noise morphology, a method that not only reduces strand and shaking noise
interference but also improves the signal-to-noise ratio for more precise defect
localisation. Extending these developments, Pan et al. [36] introduced
a sophisticated target-feature-oriented denoising method that enhances LF features
via digital image processing to mitigate noise distortion in steel wire rope inspec-
tions, further developing a three-stage adaptive localisation framework based on
disjoint region analysis to improve LF detection accuracy in denoised MFL images
affected by distorted noise.
The main challenges for the reported methodologies are summarised as follows:

(1) The detection and analysis of low-amplitude faults poses significant challenges,
particularly in scenarios where signal integrity is compromised by lift-off effects or
when dealing with inherently weak defect signatures. This limitation is further
exacerbated in industrial environments where variable operating conditions and
complex structural geometries can further attenuate already diminished signals,
making reliable fault identification exceptionally challenging without specialised
methodological frameworks and enhanced signal processing techniques.

(2) Current noise reduction methodologies demonstrate critical limitations when
ambient noise amplitudes approximate those of low-amplitude leakage fluxes,
potentially resulting in the degradation or loss of vital fault signatures during
signal processing. This challenge is particularly pronounced in industrial settings
where multiple noise sources coexist, making it increasingly difficult to differenti-
ate genuine fault signals from background interference while maintaining signal
fidelity through traditional filtering approaches.

(3) Existing localisation frameworks encounter substantial difficulties in establishing
an optimal equilibrium between maximising detection accuracy and maintaining
acceptable false omission rates, often resulting in procedural complexity that
impacts practical implementation. This challenge is compounded by the need to
process substantial volumes of data in real-time applications while ensuring
reliable fault detection across varying operational conditions and defect types,
necessitating more sophisticated yet efficient algorithmic approaches.
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Previous research endeavours in this domain have put forth a diverse array of metho-
dological approaches for both noise reduction and the precise localisation of LFs.
Nevertheless, a particularly challenging scenario emerges when dealing with LFs of
diminished magnitude, which may manifest either due to the intrinsic weakness of the
LFs itself or through lift-off effects that subsequently attenuate the signal strength.
Furthermore, in circumstances where the amplitude of ambient noise approximates
that of these lower-magnitude LFs, conventional noise reduction techniques may inad-
vertently compromise the integrity of the LFs signals, thereby substantially impeding
subsequent localisation procedures. Additionally, while current localisation methodolo-
gies have made significant strides, they frequently encounter difficulties in establishing
an optimal equilibrium between detection accuracy and acceptable false omission rates,
often resulting in procedural frameworks of considerable complexity. In response to
these multifaceted challenges, this research systematically examines the distinctive char-
acteristics of lower-amplitude LFs and proposes an innovative methodological frame-
work designed to achieve enhanced detection rates. The fundamental scholarly
contributions of this research can be delineated as follows:

(1) A novel multi-channel magnetic signal pre-processing framework is proposed that
enhances weak leakage flux signals through adaptive channel-wise feature extrac-
tion. By systematically analysing and combining complementary information
from multiple magnetic sensors, this approach effectively amplifies weak damage
signatures while maintaining their essential characteristics, even under challen-
ging lift-off conditions.

(2) An innovative scale transformation and channel fusion methodology is developed
that optimally combines multi-channel magnetic leakage signals at different
scales. This approach effectively suppresses environmental noise while preserving
damage-related features, resulting in enhanced signal quality and improved detec-
tion capability for various types of defects in steel wire ropes.

(3) A robust damage localisation algorithm is presented that integrates the enhanced
multi-channel magnetic flux signals with optimised template matching. By lever-
aging the distinctive magnetic leakage patterns associated with different damage
types, this method achieves superior detection accuracy and computational effi-
ciency while maintaining low false alarm rates in steel wire rope inspection.

This research is organised into three interconnected sections that progressively build
upon each other to address the challenges of defect detection in steel wire rope systems.
Initially, Section 2 establishes the theoretical foundation by conducting an in-depth
examination of Magnetic Flux Leakage (MFL) signal characteristics and Local Flaws
(LFs) detection mechanisms, while also exploring their intricate relationships within steel
wire rope infrastructures. Subsequently, Section 3 introduces and thoroughly details our
novel multi-channel fusion scale transformation and signal enhancement framework,
which encompasses several sophisticated components, including adaptive signal ampli-
tude mitigation strategies, advanced contrast enhancement techniques, and innovative
channel fusion methodologies that work synergistically to improve detection accuracy.
The investigation culminates in Section 4, where we present an extensive experimental
validation study and rigorous performance analysis that not only demonstrates the



6 Y. WANG ET AL.

robust effectiveness of our proposed methodology in detecting and precisely localising
LFs under various challenging operational conditions, but also provides detailed com-
parative analyses against contemporary state-of-the-art approaches to quantitatively
establish the advantages of our method. Finally, Section 5 summarises the key findings,
discusses the broader implications of our research, and outlines promising directions for
future investigation.

2. Literature review and theoretical framework

This section presents a comprehensive examination of the existing research foundations
and theoretical underpinnings that form the basis of this study. The discussion is
systematically organised into two fundamental aspects: First, we explore the character-
istics and behaviour of magnetic flux leakage signals in steel wire ropes (detailed in
section 2.1), followed by an in-depth analysis of the distinguishing features associated
with local flaws (elaborated in section 2.2). This structured approach enables a thorough
understanding of both the theoretical framework and its practical applications.

2.1. Magnetic flux leakage signal characteristics in steel wire rope systems

The fundamental architectural framework of the detection apparatus is inherently rooted
in Magnetic Flux Leakage (MFL) detection methodology [37], wherein the detection
mechanism generates a concentrated internal magnetic field upon encircling the steel
wire rope. When traversing structural irregularities, the system produces distinctive MFL
signal patterns, which are systematically captured through an advanced 16-channel Hall
sensor array system, enabling precise spatial localisation of Local Flaws (LFs). The Hall
sensor array, strategically configured along the circumferential direction, enables quan-
titative measurement of radial MFL signals through the Hall effect principle, converting
magnetic fluctuations into electrical signals while ensuring comprehensive rope cover-
age. By maintaining uniform velocity during data collection, the system achieves tempo-
rally equidistant sampling, thereby ensuring consistent data acquisition and enabling
precise spatial positioning of detected flaws within the Steel Wire Rope (SWR) through
sophisticated computational algorithms. Furthermore, the system’s adaptability permits
varying collection speeds across different processes, enhancing dataset diversity while
maintaining measurement accuracy through advanced signal processing techniques and
pattern recognition methodologies.

The post-acquisition processing of MFL data involves a systematic transformation of
electrical signals into high-resolution images through several critical stages, ultimately
achieving enhanced defect localisation precision. Initially, the trend components are
methodically eliminated from the signal array, followed by the careful concatenation of
16-channel signals and their subsequent segmentation into discrete lengths of H samples.
Finally, through the application of sophisticated cubic spline interpolation techniques,
the resolution is substantially enhanced from 16 to K points in the channel direction,
effectively transforming the extended data segments into high-fidelity H x K pixel
images [36].
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2.2. Characteristic features and detection mechanisms of local flaws

In the context of radial-direction MFL detection using Hall sensors, LFs exhibit dis-
tinctive signal signatures characterised by a series of adjacent peaks and valleys, occa-
sionally manifesting with supplementary peak or valley formations [34]. This
characteristic pattern has emerged as one of the most reliable and widely implemented
indicators for LF detection using MFL methodology. However, it is important to note
that these signal patterns are susceptible to various forms of interference, including but
not limited to strand noise and mechanical vibration-induced disturbances.
A particularly challenging aspect of this detection paradigm relates to the lift-off effect,
which introduces multiple complexities into the detection process. This phenomenon not
only exacerbates the difficulty of noise elimination but can also result in the attenuation
of LF signal amplitudes, thereby significantly increasing the complexity of accurate
detection and characterisation.

Contemporary research approaches have undergone a significant paradigm shift,
moving away from conventional methodologies that relied on sequential denoising
followed by LF detection. Instead, modern approaches directly leverage the intrinsic
features of LFs, employing sophisticated template matching algorithms to identify
regions exhibiting characteristic signal patterns. These advanced techniques are comple-
mented by various threshold determination methods, ultimately enabling more precise
and reliable localisation of LFs.

3. A novel framework for multi-channel fusion scale transformation and
signal enhancement

This section presents a comprehensive methodological framework for multi-channel
fusion scale transformation and advanced signal processing, as illustrated in Figure 1.
The proposed approach systematically integrates multiple sophisticated processing
stages: Initially, high-amplitude signals undergo systematic suppression through adaptive
thresholding, followed by advanced contrast enhancement operations. Subsequently, the
processed signals are reconstructed through innovative channel shuffling and fusion
techniques, ultimately facilitating precise defect localisation through optimised bright-
ness value analysis and spatial mapping. The transformed MFL signal scale undergoes
a dual adjustment: cubic spline interpolation up-samples the original 16-channel signals
to M x N dimensions, while amplitude normalisation and channel shuffle-fusion opera-
tions enhance feature-scale contrast, collectively enabling precise LF detection via inte-
grated spatial and feature-scale transformation. This scale-driven framework is detailed
in 3.1 and 3.3, where the interpolation and fusion mechanisms synergistically resolve
low-amplitude defect signatures amid complex noise.

3.1. Adaptive signal amplitude mitigation and enhancement strategy

In the context of defect detection utilising Magnetic Flux Leakage (MFL) signals, the
identification of low-amplitude Local Flaw (LF) signatures presents significant chal-
lenges, particularly when these signatures are situated in proximity to high-amplitude
LF regions. This challenge is further compounded when the low-amplitude signals result
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Figure 1. Architectural overview of the proposed multi-channel fusion scale transformation
framework.

from either inherently smaller defects or lift-off effects [38], especially in environments
characterised by strong and distorted noise patterns. Conventional threshold-based
detection methodologies attempting to identify such subtle LF signatures frequently
result in false positive classifications, wherein noise artefacts are erroneously identified
as defect indicators. To address these limitations, our framework implements a two-stage
approach: First, we establish a systematic procedure for identifying and marking the
spatial coordinates of high-amplitude LF signatures, followed by selective amplitude
suppression to enhance the visibility of low-amplitude features. While this methodolo-
gical approach effectively enhances the prominence of smaller LF signatures, it intro-
duces an additional technical challenge: certain noise components may exhibit amplitude
characteristics that closely parallel those of the target low-amplitude LF signals. This
similarity necessitates the implementation of sophisticated denoising algorithms and
advanced signal differentiation methodologies, which are comprehensively detailed in
subsequent sections of this analysis.

Given the original signal, defined as x[p, g] for the p-th channel at the g-th sample,
where p=1,2,...,Pand g=1,2,...,Q, with P = 16 in this implementation corre-
sponding to the 16-channel Hall sensor array, Q depends on the length of the test SWR,
the velocity during the sampling process, and the number of repetitions of the acquisition
process. The signal processing procedure consists of several sequential operations,
beginning with a moving average filter and culminating in matrix segmentation.
Initially, a moving average filter is applied to extract the trend component, which can
be expressed as:
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x[p, i] (1)

Subsequently, we compute the detrended signal by subtracting the trend component
from the original signal:

b[P’q] :x[Pa q] —a[p,q] (2)

where S represents the window size in the moving average filter, a[p, q] denotes the
smoothed signal obtained through the application of the moving average filter to x[p, q|,
and b[p, q] corresponds to the detrended signal component.

Following this initial detrending step, the next processing stage implements a rigorous
signal normalisation protocol. This protocol systematically maps the entire amplitude
spectrum to a standardised range of [—1, 1]:

h[p,q]zmxz_l (3)

bmax - bmin

where h[p, q| represents the processed signal after applying the normalisation proto-
col, bpmin and b,y represent the minimum and maximum values of b[p, g], respec-
tively. This normalisation procedure reveals that, notwithstanding the presence of
various high-amplitude noise components, numerous defect signatures maintain dis-
tinct identifiability, thus enabling direct localisation at the signal level, as empirically
demonstrated in Figure 1. Through comprehensive empirical analysis and iterative
validation, an optimal threshold value of 7 = 0.4 was established, achieving an
optimal balance between reliable LF detection and noise rejection, whereby signal
values with absolute magnitude exceeding 7 are set to zero. This processed signal,
denoted as y[p, gq], can be formally defined as:

_( 0 [|kp.qll>7
Ve gl = (h[p,q} otherwise @

here, y[p, q] denotes the thresholded signal value for the p-th channel at the g-th sample
point.
The thresholded signal matrix of dimensions P X Q, we proceed to interpolate the

data from the original P channels to M channels. For each sample indexg = 1,2,...,Q,
the interpolation process involves the following steps:
¥, = b(1,9),72,9), ..., y(P,9)]" (5)
pP-1
=1 1) — =1,2,....M
fu=1+(m—1)- 1, m ©
z(m,q) = P(Emyy,), m=12,....M (7)

where y, represents the column vector corresponding to sample g, §, denotes the uniformly
distributed interpolation points along the channel dimension within [1, P], and @ represents
the cubic spline interpolation function that estimates the signal value at &, based ony,,

z(m, q) represents the interpolated signal value at the m-th channel for the g-th sample.
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The resulting interpolated matrix Z can be expressed in its complete form as:

z(1,1)  z(1,2) - 2z(1,Q)
Z(Z,l) Z(272) Z(Z,Q)

= : : . : (8)
M 1) Z(M,2) - 2z(M,Q)

To facilitate subsequent analysis and detection procedures, matrix Z is partitioned into
sub-matrices of size M x N, where N = M in this implementation. For each column block

index i =1,2,..., [¢], the corresponding sub-matrix Z; is extracted as:
2(1,(i—1)-N+1) z(1,(i—=1)-N+2) - z(1,min(i-N,Q))
z(2,(i—1)-N+1) 2(2,(i—1)-N+2) --- 2z(2,min(i-N,Q)) @)
i = . . . . 9
zZM,(i—1)-N+1) zM,(i—1)-N+2) --- z(M,min(i-N,Q))

where [x] denotes the ceiling function that maps X to the smallest following integer.

3.2. Enhancement and characterization of local flaws features

The application of maximum mitigation techniques reveals previously subtle LFs; never-
theless, the persistent presence of various noise types, particularly mechanical shaking
noise and lift-off effect anomalies, continues to pose significant challenges in distinguish-
ing authentic LF signals. The pronounced shaking noise, which substantially interferes
with subsequent analytical methodologies, necessitates a targeted elimination approach.
Consequently, we implemented the sophisticated denoising algorithm developed by Ren
[21], which, despite the presence of minor signal distortions, effectively suppresses the
pervasive shaking noise across all measurement channels, as evidenced by comparative
analysis before and after denoising implementation.

The quantitative efficacy of this denoising protocol is clearly demonstrated through
the juxtaposition of Figure 1(a-c,d-f). Although Ren’s methodology proves highly effec-
tive in eliminating prominent shaking noise, it inevitably introduces a degree of signal
amplitude attenuation. This secondary effect particularly impacts the detection and
differentiation of low-amplitude LFs, which inherently possess minimal signal ampli-
tudes. These low-amplitude LFs typically exhibit several distinctive characteristics that
facilitate their identification: 1) Limited channel occupation, 2) Relatively enhanced
signal strength post-Maximum Mitigation, and 3) Characteristic morphology featuring
closely spaced peaks and valleys, with a consistent pattern of at most one valley between
adjacent peaks or one peak between adjacent valleys.

The spatial relationship between regions of extreme intensity is quantified through the
Euclidean distance metric, defined as:

d = \/(rmax - rmin>2 + (Cmax - Cmin)2 (10)

where (max; Cmax) and (7min, Cmin) represent the row and column indices corresponding
to the maximum intensity point Cp,, and minimum intensity point Cy;,, respectively.
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This metric provides a fundamental measure of the spatial separation between regions of
contrasting brightness within the image matrix, expressed in pixel units.

The algorithm implements a distance-based decision criterion whereby the computed
Euclidean distance d is compared against a predetermined threshold « = 15. In cases where
d > a, the algorithm terminates without further modification to preserve the original image
characteristics. However, when the spatial proximity criterion is satisfied (i.e. d < «), the
algorithm proceeds to analyse circular regions of diameter D = 40 pixels centred at both
extremal points. Within these regions, pixels whose intensity values fall within the interval
[B - Cuins B - Ciax)> where 3 = 0.4 serves as an intensity scaling parameter, are candidates
for brightness adjustment. Furthermore, to ensure robust noise discrimination and main-
tain structural coherence, the algorithm specifically targets connected pixel clusters while
excluding isolated pixels that may represent spurious noise artefacts.

The circular region Rp(p) centred at point p (representing either Cpax or Cpin) is
formally defined as:

Rp(p) = {(m,n) :[| p = (m,n)ll» < D/2} (11)

where || - ||, denotes the Euclidean norm. This formulation establishes a bounded circular
domain within which subsequent intensity analysis is conducted.
The subset of pixels eligible for brightness adjustment is characterised by

Alp) = {(m,n) € Rp(p) : B+ Coin < Zi(m, 1) < B+ Crax } (12)

where this set A(p) includes only those pixels within Rp(p) whose intensity values
Zi(m,n) fall within the specified range determined by the scaling factor 8 applied to
the minimum and maximum intensity values.

To ensure structural integrity and mitigate the impact of noise, the algorithm
incorporates connectivity constraints through the identification of maximal connected
components. Given a binary mask B, the largest connected component Cp,y(B) is
defined by:

Cmax(B) = C 13
(B) = arg clélc"‘(’é)‘ | (13)

where C(B) represents the set of all connected components, and |C| denotes the cardin-
ality of component C. The corresponding pixel coordinates are collected in:

Pmax(B) = {(m,n) : (m,n) € Crax(B) } (14)

The final brightness adjustment transformation is implemented through the following
piecewise function:

2 Z,’(m, 1’1) (1’)’1, n) € Pmax(H) U PmaX(L)

Zo(m,n) = < Zi(m, n) otherwise =

where Z;(m,n) and Z,(m, n) denote the intensity values at pixel coordinates (m, n) for
the input and output images, where H and L denote binary masks corresponding to high-
intensity and low-intensity regions, respectively. This transformation selectively doubles
the intensity of pixels belonging to the largest connected components while preserving
the original values of non-selected pixels, thereby maintaining the image’s structural
integrity while enhancing local contrast.
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3.3. Channel Shuffle and fusion

While the preceding contrast enhancement phase has successfully amplified the visibility
of structural defects within the image, the persistent presence of distorted strand noise
coupled with subtle mechanical vibration-induced artefacts necessitates the implementa-
tion of a more sophisticated localisation methodology. To address these challenges
comprehensively, this paper introduces an innovative approach incorporating channel
shuffling and reconstruction mechanisms, specifically designed to mitigate the impact of
these traditionally intractable noise patterns, thereby facilitating more robust defect
detection. Building upon the theoretical framework established by Zhou et al. [34] in
Section 2, the initially acquired 16-channel electromagnetic signals undergo a systematic
process of interpolation and segmentation. This process effectively partitions the com-
prehensive signal into a sequence of M x N pixel images, substantially enhancing the
spatial resolution of the acquired data. Each resultant image can be mathematically
conceptualised as a M x N matrix, wherein individual pixel intensity values correspond
directly to matrix elements. In this configuration, each row represents a distinct channel,
while columns correspond to sequential samples. The physical position of these samples
on the SWR depends on the inspection velocity during each detection cycle.

The proposed methodology implements a novel channel fusion approach wherein
each row of the numerical matrix undergoes multiple iterations of random permutations.
The cumulative results of these successive permutations are systematically integrated to
achieve optimal channel fusion and reconstruction, as comprehensively illustrated in
Figure 1. Empirical observations demonstrate that post-Channel Shuffle and Fusion
processing, the characteristic features of LFs exhibit notably improved spatial distribu-
tion across all channels, manifesting as well-defined peaks and valleys, while simulta-
neously achieving significant attenuation of random noise components, thereby
substantially reducing the complexity of subsequent identification procedures.

an ap -+ AN
azy axy - 42N

Zo=| . . ) (16)
am, AaMm2 - GMN

Consider the matrix Z, of dimension M x N, where each element a; represents
a distinct feature coefficient. In order to enhance the robustness of our analysis and
mitigate the effects of localised anomalies, we implement a systematic permutation
procedure. Specifically, for each row i, we apply independent random permutations P;
to generate a new matrix Zy, as illustrated below:

/ !/ /!
an an ar N a1 ain aiN
! ! !
*) azl azxp ... a2NO P ang adzp ... 42N
zy | . . — . . . (17)
/ / /
aM71 aM’z e CIMJ\] a M,1 a M2 ..o a MN
vV

Original Matrix Z, Permuted Matrix 7’ E)k)
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Subsequently, this permutation process is iterated j times, yielding a sequence of

matrices Z$" fork=1,2,..., j- These matrices are then aggregated through summation
to produce the final fusion matrix:

J
I= qusion = Zzl()k) (18)
k=1

Through this iterative permutation and aggregation process, the resultant matrix
I = Zgysion demonstrates notably improved characteristics, particularly in terms of the
spatial distribution of LFs. Moreover, this methodology effectively attenuates random
noise components while preserving the essential structural information, thereby enhan-
cing the reliability and interpretability of the feature representation.

3.4. Localization of local flaws through template matching analysis

This critical stage implements a sophisticated dual-approach methodology, combining
template matching techniques with mean brightness value analysis to precisely determine
the spatial coordinates of LFs within the target image. The process begins with the
application of Gaussian filtering as a preliminary preprocessing step, which serves to
enhance image smoothness and amplify the contrast between distinct brightness regions,
thereby establishing a more robust foundation for subsequent analytical procedures.
Following this initial pre-processing phase, the algorithm proceeds with a template-based
analysis that accounts for the inherent binary nature of LF manifestations. Given that LFs
characteristically present themselves as either a light-to-dark or dark-to-light transition
region, the methodology necessitates the implementation of two complementary symmetric
templates to comprehensively capture these bidirectional variations. In accordance with the
dimensional constraints established in Section 3.3, these templates must maintain a vertical
dimension of H (where H = M by definition), while the horizontal extent of each brightness
region typically encompasses approximately W units, with an additional unit-width transi-
tion zone to accommodate gradual brightness variations. These geometric and photometric
requirements can be formally expressed through the following matrix representations:

1 -~~~ 1.0 -1 --- —1 (1w 0 —1y]
Templatel = | - "~ & -+ . = :
L 10 =1 - =11y owy Llw 0 —1w | Hx(2W+1)
(19)
-1 -+ -1 0 1 --- 1 [—1y 0 1y ]
Template2 = | = -~ . o . = : S
-1 - =1 0 1 - Ilgowsy [—1lw 0 1w | Hx(2W+1)
(20)

For the implementation of template matching, I represents the matrix obtained from
the process described in Section 3.3, with dimensions M x N, this matrix denotes the
input image for subsequent processing and analysis. And let T; and T, denote the
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respective template matrices, each sized H x (2W + 1). The methodology employs
Normalized Cross-Correlation (NCC) as the primary matching metric, chosen for its
robustness to intensity variations and superior performance in pattern recognition tasks.
The NCC computation is formally defined as:

c Z L ((m+in+j—W)—Ln_n)(T(i,j)—Tp)
Tmn

TS (Ut it i — W) — T /S S (Ty(0)) — Ty

(21)

In this formulation, Cr,(m,n) represents the normalised correlation coefficient
between template T, and the corresponding local region within image I at coordinates
(m,n). The terms I, and T, denote the mean values of the local image region and
template, respectively, ensuring normalisation across varying brightness conditions.

The correlation results undergo systematic binary classification through a threshold-
based discrimination process, which can be formally expressed as:

(1 Cr(m,n)>u
By(m, n) = <0 étherwise (22)

where y represents a carefully calibrated threshold parameter that discriminates between
significant and insignificant correlation responses. The resulting binary map B, (m, n)
maintains dimensional consistency with the original input matrix I. The final detection
map is synthesised through the logical fusion of both template responses, effectively
capturing all potential LF manifestations regardless of their orientation.

B(m,n) = By(m,n) V By(m,n) (23)

Following the implementation of dual-template matching for initial LF localisation
and considering the aforementioned preprocessing steps, it becomes feasible to exploit
the intrinsic brightness characteristics of the regions of interest. Notably, in the absence
of Channel Shuffle and Fusion operations, the precise determination of the LF’s dimen-
sional parameters (width, height) and channel positions within the image matrix remains
ambiguous, consequently leading to computationally intensive operations and dimin-
ished verification accuracy. However, the preliminary processing framework enables the
optimal utilisation of average brightness analysis. This methodology encompasses the
systematic partitioning of the image into fixed-width regions, followed by the computa-
tion and hierarchical ranking of regional brightness averages, ultimately facilitating the
identification of regions exhibiting extreme brightness values and their spatial relation-
ships. The integration of this brightness-based analysis with the previously identified
high-response regions from template matching enables a comprehensive evaluation
framework for definitive LF position determination through intersection analysis.

Given the input image matrix I, the systematic regional partitioning and subsequent
average brightness computation can be mathematically expressed as:

M—-1W-1

I(i,j+ kW) (24)
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where W represents the width of the sliding window operator, and A, denotes the average
brightness value computed for the ¢-th region, initiating at column tW and extending over W
columns. Subsequently, the algorithm performs a comprehensive sorting operation on the set
of average brightness values A, to identify the k highest and lowest intensity regions, denoted
as sets Hy and Ly respectively. The methodology specifically considers regions within Hy and
Ly that exhibit spatial overlap or adjacency as potential LF positions, formally defined as
A(m, n), where m and n represent the respective row and column indices.

The final LF localisation result is achieved through the logical integration of both
detection methodologies, formally defined as:

F(m,n) = A(m,n) A B(m,n) (25)

where F(m, n) represents the definitive spatial location of the LF within the image matrix.

4. Experimental validation and performance analysis

This section presents a comprehensive validation and rigorous experimental analysis of
the Multi-Channel Fusion Scale Transformation (MCFST) method’s effectiveness, focus-
ing particularly on its capabilities in detecting and characterising challenging Local Flaws
(LFs) that manifest with lower amplitude signatures. Furthermore, the validation process
encompasses both quantitative and qualitative assessments to establish the method’s

Algorithm 1 Multi-channel Fusion Scale Transformation (MCFST) for Local Flaw Detection

—_

: procedure SIGNAL PREPROCESSING(Raw MFL signal z[p, ¢], P=16 channels, Q samples)
Input parameters:
S: window size for moving average filter
7: amplitude suppression threshold (e.g. 0.4)
M, N: dimensions for interpolation and segmentation (M = N = 200)
o: Euclidean distance threshold (e.g. 15)
B: intensity scaling factor (e.g. 0.4)
for p=1to P do
for g =1to Q do

—
=

s—1
Calculate moving average: alp, q] = % Z{H 25 z[p, ]
i=q— =5

==
N =

Detrend signal: b[p, q] = z[p, q] — a[p, q]
end for
13: end for
14: Output: Normalized signal matrix h[p, q]
15: end procedure
16: procedure SIGNAL ENHANCEMENT(Matrix Z)
17: for i =1 to f%'\ do

18: Extract submatrix Z; = Z[:, (i — 1)N + 1 : min(iN, Q)]

19: Compute Euclidean distance d between max/min intensity points
20: if d < a then

21: Enhance brightness in regions RD(Cmaz), RD(Cmin)

22: end if

23: end for

24: Output: Enhanced matrix Z,

25: end procedure

26: procedure FLAWLOCALIZATION(Binary map B(m,n), Enhanced matrix Z,)
27: Compute average brightness A; for width-W regions

28: Generate candidate map A(m,n)

29: Final detection: F(m,n) = A(m,n) A B(m,n)

30: Output: Local Flaw location map F(m,n)

31: end procedure
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robustness and reliability under various operational conditions simulating critical indus-
trial field inspection scenarios, including variable operational speeds, circumferential
orientations, and controlled jitter. Additionally, through systematic investigation and
comparative analysis with conventional detection approaches, this study demonstrates
how the MCFST method addresses the longstanding challenges associated with weak
signal detection in Steel Wire Rope (SWR) inspection systems across diverse applications
like elevators, mining equipment, and bridges. Moreover, the experimental framework
incorporates multiple test scenarios and environmental variables specifically designed to
simulate real-world challenges such as lift-off effects and complex noise environments to
ensure comprehensive evaluation of the method’s performance in real-world applica-
tions, thereby providing substantial evidence for its practical utility in industrial deploy-
ment. The subsequent analysis not only validates the theoretical foundations of the
MCEFST approach but also establishes its superiority in enhancing the detection sensi-
tivity and accuracy for subtle structural anomalies that have traditionally posed signifi-
cant challenges in non-destructive testing protocols.

The MFL detection method for SWRs functions by identifying magnetic field anoma-
lies at defect locations within magnetised ropes. The detection system employs Hall
sensors to pinpoint these defect positions with precision. As illustrated in Figure 2(a), the
detector comprises a sensor system architecture that includes two concentric permanent
ring magnets with radial magnetisation, magnetic yokes, and sensor arrays. The magne-
tisation system incorporates these custom-engineered ring magnets and yoke magnetic
bridges that encircle the SWR, establishing a magnetic circuit that drives the rope to
magnetic saturation. This saturation condition is crucial for generating detectable MFL
signals at defect sites. The test rig configuration, shown in Figure 2(b), reveals the internal
sensor arrangement consisting of two semicircular PCB circuit boards equipped with 16
uniformly distributed Hall sensors spaced at 22.5° intervals to capture radial MFL signals.
During operation, analog voltage outputs from the Hall sensor array are digitised in real-
time by a 16-bit analog-to-digital converter with 5 V dynamic range. The digitised
multichannel data is streamed to an embedded computing unit where axial position is
synchronised with encoder pulses to correlate temporal signals with spatial coordinates
along the rope’s longitudinal axis. The experimental setup utilises two test specimens:
a 32mm diameter SWR and a 30mm diameter SWR, each containing four artificially
created broken wire LFs. These manufactured defects vary in severity, spanning from
single wire breaks to 3.5 broken wires, providing a range of test conditions for system
validation. The practical inspection scenarios, as depicted in Figure 2(c), demonstrate the
field deployment of the MFL test rig.

In the context of rigorous field testing protocols, the MFL acquisition process is
meticulously controlled through three critical operational variables: the detector’s long-
itudinal movement speed along the SWR, its precise circumferential orientation relative
to the rope’s central axis, and the frequency of intentionally induced rope jittering. To
systematically evaluate the system’s performance across a spectrum of inspection velo-
cities, the detector is operated at three carefully selected speeds — 0.5 m/s, 1 m/s, and 1.5
m/s — while maintaining consistent measurement parameters. Furthermore, the circum-
ferential orientation is methodically controlled by rotating the detector around the
SWR’s circumference, whereby measurements are acquired at precise 30 intervals, thus
generating 12 comprehensive datasets that collectively encompass the rope’s entire



NONDESTRUCTIVE TESTING AND EVALUATION 17

& @ D) g
| _ N
] &
= =]
(- 2
2 :
@ — | M)

(b)

Figure 2. (a) Schematic overview of the magnetic flux leakage (MFL) detection system architecture, (b)
detailed view of the MFL test rig configuration showing internal sensor arrangement, (c) field
deployment of the MFL test rig during practical inspection scenarios.

circumferential profile. Additionally, to simulate various real-world vibration conditions
that may be encountered during actual inspections, rope jittering is systematically tested
across a controlled frequency range spanning from 0 to 3. It should be noted that to
ensure comprehensive data collection, we also test speeds at 0.1 m/s increments around
each baseline value (0.5 m/s, 1 m/s, and 1.5 m/s) and systematically sample jitter frequen-
cies at 0.5 intervals across the entire 03 range. This approach will provide a more
complete understanding of the system’s performance under varied operating conditions.

Table 1 provides comprehensive visual documentation and systematic severity classifi-
cation of structural damage patterns observed in the SWR specimens, whereby each
specimen consistently manifests two distinct LFs. The primary defect is predominantly
characterised by severe structural deterioration, which encompasses either complete wire
breakage or substantial cross-sectional reduction, whereas the secondary defect exhibits
relatively milder forms of degradation. In order to rigorously validate the experimental
findings and establish robust correlations, we conducted detailed analyses of three char-
acteristic signal segments, with each segment containing 200 discrete sampling points
(although it should be noted that due to inherent variations in data collection speeds, the
physical distances represented by these sample points may exhibit some variability across
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Table 1. Specifications of the LFs.

Length of the Length of the
No. LF LF
1 5mm 3 mm
2 3mm 5mm
3 4.5mm 3 mm

different datasets), as comprehensively illustrated in Figure 3(a) through (c). Furthermore,
these carefully selected signal segments demonstrate direct and unambiguous correspon-
dence to the three distinct damage configurations meticulously documented in Table 1,
thereby establishing a clear and quantifiable relationship between the observed physical
damage patterns and their associated electromagnetic signal responses. Through the
application of the transformation algorithms defined in Eq.(5)~(7), these temporal signals
were subsequently converted into two-dimensional spatial representations with dimen-
sions of 200 x 200 pixels, as illustrated in Figure 3(d-f).

Critical examination of the three signal segments reveals that each contains
a prominent LF signature with substantial amplitude, accompanied by an adjacent,
significantly attenuated LF signal. Conventional detection methodologies frequently
fail to identify these lower-amplitude anomalies due to their diminished signal strength.
To address this limitation, we implemented Maximum Mitigation preprocessing on the
dominant amplitude signals according to Equation (3~4), with results demonstrated in
Figure 4(a-c). While this procedure successfully amplifies the LF signatures, it concur-
rently increases the noise floor, necessitating additional signal-to-noise ratio
enhancement.

Analysis of Figure 4(a-c) reveals distinct characteristic differences between LF signa-
tures and noise components. LF signals consistently exhibit greater amplitude magnitude
and demonstrate spatial continuity and adjacency, whereas noise components lack these
defining characteristics. Leveraging these discriminative features through the application
of Equation (10-15), we achieved enhanced LF signal definition while preserving original
noise characteristics, as illustrated in Figure 4(d-f). This enhancement significantly
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Figure 3. Comparative visualization of signal transformation: (a)~(c) original MFL signals containing
dual LF signatures; (d)~(f) corresponding interpolated image representations.

improves the signal-to-noise contrast ratio, thereby facilitating subsequent processing
and precise LF localisation.

The final stage implements Channel Shuffle and Fusion operations according to
Equation (10-18). Comparative analysis between Figure 4(d-f,g—i) demonstrates the
efficacy of this approach. Through this process, LF signatures achieve uniform distribu-
tion across all channels, substantially minimising noise interference and enabling sim-
plified defect localisation methodologies in subsequent processing stages.

Following the multi-channel processing stages, precise LF localisation is executed
utilising Eq. (21) through Eq. (25). Subsequently, the spatial coordinates of the previously
identified and Mitigated LF signals are systematically mapped onto the resultant image.
This comprehensive approach facilitates the accurate identification of all LF features,
with the final localisation outcomes clearly demonstrated in Figure 5(d1) through (d3).

To rigorously evaluate and validate the effectiveness of our proposed methodology, we
conducted extensive comparisons against three widely-adopted LF detection approaches:
the Canny Edge Detection (CED) algorithm [32], the Constant Threshold (CT) method
[35], and the Adaptive Threshold (AT) technique [36]. For the three distinct signal
segments illustrated in Figure 3, we initially applied the target-feature-oriented denoising
method [36] to enhance the signal quality prior to final localisation using the aforemen-
tioned three methods. While both the Canny Edge Detection and Constant Threshold
methods successfully identified all LF features, they simultaneously generated substantial
false positives, thereby significantly compromising the reliability of actual defect identi-
fication, as evidenced in Figure 5(al) through (b3). Although the Adaptive Threshold
method generally demonstrates superior robustness under standard conditions, it
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Figure 4. Systematic visualization of the experimental processing procedure. (a)~(c) post-maximum
mitigation processed images. (d)~(f) images following low-frequency feature enhancement. (g)~ (i)
results after Channel Shuffle and feature fusion operations.

exhibits notable limitations when confronted with scenarios involving small-amplitude
LF defects adjacent to large-amplitude ones, frequently failing to detect the smaller
defects, as shown in Figure 5(cl) through (c3). In contrast, our proposed method
effectively addresses these limitations, achieving precise defect localisation while mini-
mising false positives, as depicted in Figure 5(d1) through (d3).

In order to validate the practical effectiveness of our proposed methodology, we
conducted comprehensive performance testing by processing three distinct signal seg-
ments, which are illustrated in Figure 4(a—c), through our detection framework. The
experimental computations were executed on a standardised testing platform that con-
sisted of an Intel Core i5-9300 H processor operating at 2.40-GHz, complemented by 16
GB of system memory, and running under the Windows 11 64-bit operating environ-
ment. The computational analysis revealed that the processing durations required to
generate the detection outcomes, as depicted in Figure 5(d1-d3), were 0.51 seconds,
0.73 seconds, and 0.61 seconds respectively, yielding an average processing time of
approximately 0.62 seconds per signal segment. These empirical results demonstrate
that our method exhibits robust computational efficiency, thereby making it particularly
suitable for real-world implementations, especially considering that the processing per-
formance could be further enhanced through the utilisation of more sophisticated hard-
ware configurations or parallel processing architectures.
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Figure 5. Detection results comparison. (a1)~(a3) detection results of Canny Edge detection (CED)
algorithm method. (b1)~(b3) detection results of Constant Threshold (CT) method. (c1)~(c3) detec-
tion results adaptive Threshold (AT) method.(d1)~(d3) detection results of proposed multi-channel
fusion scale transformed (MCFST) method.

To ensure a comprehensive and statistically significant evaluation, we utilised an
extensive dataset comprising multiple signal segments containing 764 LF features. The
comparative analysis of detection performance across all four methods is meticulously
documented in Table 2 and visualised in Figure 6. The quantitative assessment reveals
that while the Canny Edge Detection and Constant Threshold methods achieve
reasonable detection rates, they are significantly compromised by excessive false
positives, with the former generating an unprecedented 5865 false detections. The
Adaptive Threshold method demonstrates markedly improved false positive control,
recording only 80 such instances, though maintaining room for optimisation across
all performance metrics. Our proposed methodology achieves superior results, suc-
cessfully identifying 748 true positives while maintaining minimal false positives and
negatives.

The performance metrics — Precision, Recall, and F1 score — were calculated to provide
a holistic evaluation of detection efficacy. These metrics, visualised in Figure 7, demon-
strate the substantial advantages of our proposed approach. While the Canny Edge
Detection method’s extremely low precision results in an F1 score of merely 0.1548,
and the Constant Threshold method achieves a modest 0.4512, the Adaptive Threshold
method shows significant improvement with an F1 score of 0.9152. Notably, our pro-
posed methodology achieves the highest F1 score of 0.9765, substantiating its superior
comprehensive performance across all evaluation metrics.
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Table 2. Quantitative performance assessment of different methods.

MCFST
Performance metrics CED method CT method AT method method
Number of true positives 513 733 712 748
Number of false positives 5863 1752 80 20
Number of false negatives 251 31 52 16
Precision 8.75% 29.50% 89.90% 97.40%
Recall 67.15% 95.94% 93.19% 97.91%
F1 score 0.1548 0.4512 0.9152 0.9765
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Figure 6. Quantitative analysis of detection performance metrics across methodologies. (a) Statistical
distribution of true positives (TP), false positives (FP), and false negatives (FN) using Canny Edge
detection (CED) algorithm. (b) Detection performance metrics utilizing Constant Threshold (CT)
methodology. (c) Statistical outcomes from adaptive Threshold (AT) implementation. (d)
Comprehensive detection metrics achieved through the proposed multi-channel fusion scale trans-
formed (MCFST) method.
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Figure 7. Multi-dimensional performance evaluation using radar chart visualization. (a) Triaxial
representation of precision, recall, and F1 score for Canny Edge detection (CED) implementation. (b)
Performance metric distribution for Constant Threshold (CT) methodology. (c) Three-dimensional
performance analysis of adaptive Threshold (AT) approach. (d) Comprehensive performance metrics
demonstration of the proposed multi-channel fusion scale transformed (MCFST) methodology, high-
lighting superior detection capabilities.

5. Conclusion

This research has successfully developed and validated a novel multi-channel fusion scale
transformation approach for detecting and localising Local Faults in Steel Wire Rope
systems. The innovative three-fold framework proposes morphological signal enhance-
ment, introduces an advanced Channel Shuffle and Fusion mechanism, and implements
template matching with luminance characteristics, demonstrating exceptional capabil-
ities in addressing critical challenges in non-destructive testing. Experimental results
confirm the method’s superior performance in detecting diminished-magnitude faults
under challenging conditions, while maintaining computational efficiency. These newly
proposed techniques provide a robust foundation for early fault detection across various
industrial applications, significantly advancing the field of structural health monitoring.
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However, while demonstrating significant advancements, the proposed method
has several inherent limitations. The effectiveness depends heavily on the multi-
channel Hall sensor array configuration, and residual noise components may still
affect detection accuracy in extremely noisy operating conditions. Parameter
tuning is required for different rope specifications, while signal processing may
occasionally mask subtle fault indicators. Future work should focus on developing
adaptive thresholding techniques, integrating machine learning for enhanced
defect classification, validating the method’s efficacy for Loss of Metallic Area
(LMA) and single broken wire defects, and optimising computational efficiency
for real-time applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the National Natural Science Foundation of China [Grants
52105111 and 52305085], the Guangdong Basic and Applied Basic Research Foundation [Grant
2025A1515012256], the Shantou University (STU) Scientific Research Initiation Grant
[NTF21029], the Nuclear Power Institute of China Original Foundation [Grant
KJCX2022YC111], the Natural Science Foundation of Sichuan Province [Grant
2023NSFSC0861], the China Postdoctoral Science Foundation [Grant 2023M740021], the
Natural Science Foundation of Anhui Province [Grant 2108085QE229], the Industry-Academia
Cooperation Project from the Guangdong Institute of Special Equipment Inspection and Research
Shunde Branch [XT]-KY01-202503-030], and the Enterprise Collaboration Project from the
National Excellent Engineer Innovation Research Institute for Advanced Manufacturing
Industry in Foshan of Guangdong-Hong Kong-Macao Greater Bay Area [NSJH2025008].

References

[1] Mazurek P. A comprehensive review of steel wire rope degradation mechanisms and recent
damage detection methods. Sustainability. 2023;15(6):5441. doi: 10.3390/sul5065441

[2] Peterka P, Kresak J, Kropuch S, et al. Failure analysis of hoisting steel wire rope. Eng Fail
Anal. 2014;45:96-105. doi: 10.1016/j.engfailanal.2014.06.005

[3] Zhou P, Zhou G, Zhu Z, et al. A review of non-destructive damage detection methods for
steel wire ropes. Appl Sci. 2019;9(13):2771. doi: 10.3390/app9132771

[4] Chen P, Zhang R, He C, et al. Progressive contrastive representation learning for defect
diagnosis in aluminum disk substrates with a bio-inspired vision sensor. Expert Syst Appl.
2025;289:128305. doi: 10.1016/j.eswa.2025.128305

[5] Chen P, Ma J, He C, et al. Semi-supervised consistency models for automated defect
detection in carbon fiber composite structures with limited data. Meas Sci Technol.
2025;36(4):046109. doi: 10.1088/1361-6501/adc031

[6] Farhidzadeh A, Salamone S. Reference-free corrosion damage diagnosis in steel strands
using guided ultrasonic waves. Ultrasonics. 2015;57:198-208. doi: 10.1016/j.ultras.2014.11.
011

[7] Chen P, Zhang R, Fan S, et al. Step-wise contrastive representation learning for diagnosing
unknown defective categories in planetary gearboxes. Knowl-Based Syst. 2024;309:112863.
doi: 10.1016/j.knosys.2024.112863


https://doi.org/10.3390/su15065441
https://doi.org/10.1016/j.engfailanal.2014.06.005
https://doi.org/10.3390/app9132771
https://doi.org/10.1016/j.eswa.2025.128305
https://doi.org/10.1088/1361-6501/adc031
https://doi.org/10.1016/j.ultras.2014.11.011
https://doi.org/10.1016/j.ultras.2014.11.011
https://doi.org/10.1016/j.knosys.2024.112863

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

NONDESTRUCTIVE TESTING AND EVALUATION e 25

Rostami J, Tse PW, Yuan M. Detection of broken wires in elevator wire ropes with
ultrasonic guided waves and tone-burst wavelet. Struct Health Monit. 2020;19(2):481-494.
doi: 10.1177/1475921719855915

Chen P, Gao ], Zhang R, et al. Metric-guided graph contrastive learning: an unsupervised
approach for few-shot gearbox fault diagnosis. Meas Sci Technol. 2025;36(7):076110. doi:
10.1088/1361-6501/ade7a7

Chen P, Wu Y, Xu C, et al. Interference suppression of nonstationary signals for bearing
diagnosis under transient noise measurements. IEEE Trans Rel. 2025:1-15. doi: 10.1109/TR.
2025.3527739

Chen P, Wu Y, Fan S, et al. Adaptive signal regime for identifying transient shifts: a novel
approach toward fault diagnosis in wind turbine systems. Ocean Eng. 2025;325:120798. doi:
10.1016/j.0ceaneng.2025.120798

Dong Y, Pan Y, Wang D, et al. Corrosion detection and evaluation for steel wires based on a
multi-vision scanning system. Construct Building Mater. 2022;322:125877. doi: 10.1016/j.
conbuildmat.2021.125877

Zhou P, Zhou G, Wang H, et al. Intelligent visual detection method for the early surface
damage of mine hoisting wire ropes. Meas Sci Technol. 2024;35(11):115018. doi: 10.1088/
1361-6501/ad6a78

Chen P, Ma Z, Xu C, et al. Self-supervised transfer learning for remote wear evaluation in
machine tool elements with imaging transmission attenuation. IEEE Internet Things J.
2024;11(13):23045-23054. doi: 10.1109/JI0T.2024.3382878

Schaal C, Bischoff S, Gaul L. Damage detection in multi-wire cables using guided ultrasonic
waves. Struct Health Monit. 2016;15(3):279-288. doi: 10.1177/1475921716642747

Raisutis R, Kazys R, Mazeika L, et al. Ultrasonic guided wave-based testing technique for
inspection of multi-wire rope structures. NDT E Int. 2014;62:40-49. doi: 10.1016/j.ndteint.
2013.11.005

Zhang G, Tang Z, Fan Y, et al. Steel wire rope surface defect detection based on segmenta-
tion template and spatiotemporal gray sample set. Sensors. 2021;21(16):5401. doi: 10.3390/
521165401

Huang X, Liu Z, Zhang X, et al. Surface damage detection for steel wire ropes using deep
learning and computer vision techniques. Measurement. 2020;161:107843. doi: 10.1016/j.
measurement.2020.107843

Liu S, Sun Y, Kang Y. A novel e-exponential stochastic resonance model and weak signal
detection method for steel wire rope. IEEE Trans Ind Electron. 2021;69(7):7428-7440. doi:
10.1109/TIE.2021.3095802

Zhang D, Zhang E, Pan S. A new signal processing method for the nondestructive testing of
a steel wire rope using a small device. NDT E Int. 2020;114:102299. doi: 10.1016/j.ndteint.
2020.102299

Ren L, Liu Z, Zhou J. Shaking noise elimination for detecting local flaw in steel wire ropes
based on magnetic flux leakage detection. IEEE Trans Instrum Meas. 2021;70:1-9. doi: 10.
1109/TIM.2021.3112792

Chen P, Ma Z, Xu C, et al. Scale-aware domain adaptation for surface defects detection on
machine tool components in contaminant measurements. IEEE Trans Instrum Meas.
2025;74:1-9. doi: 10.1109/TIM.2024.3502888

Pan F, Huang Y, Ren L, et al. Inspection of wire ropes based on magnetic flux leakage images
by using YOLOV5. In: 2023 Global Reliability and Prognostics and Health Management
Conference (PHM-Hangzhou), Hangzhou, China: IEEE; 2023. p. 1-7. doi: 10.1109/PHM-
Hangzhou58797.2023.10482526.

Chen P, Xu C, Ma Z, et al. A mixed samples-driven methodology based on denoising
diffusion probabilistic model for identifying damage in carbon fiber composite structures.
IEEE Trans Instrum Meas. 2023;72:1-11. doi: 10.1109/TIM.2023.3267522

Kim JW, Park S. Magnetic flux leakage sensing and artificial neural network pattern
recognition-based automated damage detection and quantification for wire rope
non-destructive evaluation. Sensors. 2018;18(1):109. doi: 10.3390/s18010109


https://doi.org/10.1177/1475921719855915
https://doi.org/10.1088/1361-6501/ade7a7
https://doi.org/10.1088/1361-6501/ade7a7
https://doi.org/10.1109/TR.2025.3527739
https://doi.org/10.1109/TR.2025.3527739
https://doi.org/10.1016/j.oceaneng.2025.120798
https://doi.org/10.1016/j.oceaneng.2025.120798
https://doi.org/10.1016/j.conbuildmat.2021.125877
https://doi.org/10.1016/j.conbuildmat.2021.125877
https://doi.org/10.1088/1361-6501/ad6a78
https://doi.org/10.1088/1361-6501/ad6a78
https://doi.org/10.1109/JIOT.2024.3382878
https://doi.org/10.1177/1475921716642747
https://doi.org/10.1016/j.ndteint.2013.11.005
https://doi.org/10.1016/j.ndteint.2013.11.005
https://doi.org/10.3390/s21165401
https://doi.org/10.3390/s21165401
https://doi.org/10.1016/j.measurement.2020.107843
https://doi.org/10.1016/j.measurement.2020.107843
https://doi.org/10.1109/TIE.2021.3095802
https://doi.org/10.1109/TIE.2021.3095802
https://doi.org/10.1016/j.ndteint.2020.102299
https://doi.org/10.1016/j.ndteint.2020.102299
https://doi.org/10.1109/TIM.2021.3112792
https://doi.org/10.1109/TIM.2021.3112792
https://doi.org/10.1109/TIM.2024.3502888
https://doi.org/10.1109/PHM-Hangzhou58797.2023.10482526
https://doi.org/10.1109/PHM-Hangzhou58797.2023.10482526
https://doi.org/10.1109/TIM.2023.3267522
https://doi.org/10.3390/s18010109

26 Y. WANG ET AL.

(26]

(27]
(28]

(29]

(30]

[31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Yi W, Chan WK, Lee HH, et al. An uncertainty-aware deep learning model for reliable
detection of steel wire rope defects. IEEE Trans Rel. 2024;73(2):1187-1201. doi: 10.1109/TR.
2023.3335958

Liu S, Chen M. Wire rope defect recognition method based on mfl signal analysis and
1d-cnns. Sensors. 2023;23(7):3366. doi: 10.3390/s23073366

Liu S, Liu Y, Shan L, et al. Hybrid conditional kernel svm for wire rope defect recognition.
IEEE Trans Ind Inf. 2024;20(4):6234-6244. doi: 10.1109/T11.2023.3344135

Zhang Y, Feng Z, Shi S, et al. A quantitative identification method based on cwt and cnn for
external and inner broken wires of steel wire ropes. Heliyon. 2022;8(11):e11623. doi: 10.
1016/j.heliyon.2022.e11623

Liu S, Hua X, Liu Y, et al. Accurate wire rope defect mfl detection using improved Hilbert
transform and lIstm neural network. Nondestr Test Eval. 2024;40(4):1379-1408. doi: 10.
1080/10589759.2024.2351141

Zhao M, Zhang D, Zhou Z. The research on quantitative inspection technology to wire rope
defect based on hall sensor array. Nondestr Test. 2012;34:57-60.

Tan X, Zhang J. Evaluation of composite wire ropes using unsaturated magnetic excitation
and reconstruction image with super-resolution. Appl Sci. 2018;8(5):767. doi: 10.3390/
app8050767

Zheng P, Zhang J. Quantitative nondestructive testing of wire rope based on pseudo-color
image enhancement technology. Nondestr Test Eval. 2019;34(3):221-242. doi: 10.1080/
10589759.2019.1590827

Zhou Z, Liu Z. Fault diagnosis of steel wire ropes based on magnetic flux leakage imaging
under strong shaking and strand noises. IEEE Trans Ind Electron. 2021;68(3):2543-2553.
doi: 10.1109/TIE.2020.2973874

Liu Z, Ren L. Shaking noise exploration and elimination for detecting local flaws of steel
wire ropes based on magnetic flux leakages. IEEE Trans Ind Electron. 2023;70
(4):4206-4216. doi: 10.1109/T1E.2022.3174302

Pan F, Liu Z, Ren L, et al. Adaptive local flaw detection based on magnetic flux leakage
images with a noise distortion effect for steel wire ropes. IEEE Trans Ind Electron. 2024;71
(4):4120-4129. doi: 10.1109/TIE.2023.3273250

Ren L, Liu Z, Wang H, et al. Eliminating shaking noise for defect detection of steel wire
ropes based on magnetic flux leakage signals. In: 2019 IEEE 4th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China:
IEEE; 2019. Vol. 1. p. 1037-1041. doi: 10.1109/TAEAC47372.2019.8997698.

Yang L, Liu Z, Ren L, Liao F, and Zuo M. Quantitative detection of local flaw under the
lift-off effect for steel wire ropes. IEEE Sensors J. 2024;24(16):26081-26090. doi: 10.1109/
JSEN.2024.3421650


https://doi.org/10.1109/TR.2023.3335958
https://doi.org/10.1109/TR.2023.3335958
https://doi.org/10.3390/s23073366
https://doi.org/10.1109/TII.2023.3344135
https://doi.org/10.1016/j.heliyon.2022.e11623
https://doi.org/10.1016/j.heliyon.2022.e11623
https://doi.org/10.1080/10589759.2024.2351141
https://doi.org/10.1080/10589759.2024.2351141
https://doi.org/10.3390/app8050767
https://doi.org/10.3390/app8050767
https://doi.org/10.1080/10589759.2019.1590827
https://doi.org/10.1080/10589759.2019.1590827
https://doi.org/10.1109/TIE.2020.2973874
https://doi.org/10.1109/TIE.2022.3174302
https://doi.org/10.1109/TIE.2023.3273250
https://doi.org/10.1109/IAEAC47372.2019.8997698
https://doi.org/10.1109/JSEN.2024.3421650
https://doi.org/10.1109/JSEN.2024.3421650

	Abstract
	1. Introduction
	2. Literature review and theoretical framework
	2.1. Magnetic flux leakage signal characteristics in steel wire rope systems
	2.2. Characteristic features and detection mechanisms of local flaws

	3. A novel framework for multi-channel fusion scale transformation and signal enhancement
	3.1. Adaptive signal amplitude mitigation and enhancement strategy
	3.2. Enhancement and characterization of local flaws features
	3.3. Channel Shuffle and fusion
	3.4. Localization of local flaws through template matching analysis

	4. Experimental validation and performance analysis
	5. Conclusion
	Disclosure statement
	Funding
	References

