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ABSTRACT
The timely identiRcation and diagnosis of defects in Steel Wire Rope 
(SWR) is increasingly critical for ensuring structural integrity, opera-
tional safety, and maintenance epciency across diverse industrial 
applications, including elevators, mining equipment, bridges, and 
cable-supported structures where unexpected failures could lead to 
catastrophic consequences. Current methodologies face signiRcant 
challenges in detecting low-amplitude faults due to lift-o( e(ects 
and complex noise environments, while existing localization frame-
works struggle to balance detection accuracy with false omission 
rates. This research proposes a novel Multi-channel Fusion Scale 
Transformation (MCFST) approach utilizing magnetic )ux leakage 
signals to address the challenges in detecting and localizing Local 
Faults (LFs), particularly those with diminished amplitude due to 
inherent weakness or lift-o( e(ects amid comparable ambient 
noise. The proposed MFST develops a three-fold framework: a 
morphological-based signal enhancement technique that ampliRes 
LF signals while preserving their essential characteristics, a Channel 
Shu-e and Fusion paradigm for ambient noise mitigation, and a 
computationally epcient localization framework combining tem-
plate matching algorithms with LF-speciRc luminance characteris-
tics. Experimental results demonstrate superior performance in 
detecting and precisely localizing LFs under challenging conditions, 
o(ering substantial improvements over existing approaches in 
both detection accuracy and computational epciency..
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1. Introduction

Steel Wire Rope (SWR) has established itself as an indispensable structural component 
across a wide spectrum of industrial applications, including but not limited to elevators, 
cranes, bridges, and mining operations, primarily owing to its exceptional combination 
of mechanical properties such as high tensile strength, operational flexibility, and long- 
term durability. Nevertheless, during routine service conditions, these wire ropes are 
consistently subjected to numerous deteriorating factors, including sustained cyclic 
loading, environmental corrosion, and mechanical wear, which collectively contribute 
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to the initiation and propagation of Local Flaws (LFs) within the rope structure [1]. 
When such structural imperfections remain undetected and continue to develop, they 
can ultimately precipitate catastrophic failure events, thereby not only jeopardising 
operational safety but also potentially incurring substantial economic losses through 
equipment damage and operational downtime [2]. Consequently, the implementation of 
systematic inspection protocols and the development of advanced detection methodol-
ogies for SWR defects have become increasingly critical in maintaining the operational 
integrity and safety standards of modern industrial systems.

The evolution of non-destructive testing (NDT) for wire ropes represents a critical 
progression in structural health monitoring, beginning with rudimentary manual visual 
inspection [3–5] and subsequently evolving to incorporate more sophisticated meth-
odologies such as acoustic signal analysis [4,6–11] and machine vision techniques [5,12– 
14], primarily due to their non-invasive characteristics and superior accuracy potential. 
Within the acoustic emission domain, a significant breakthrough emerged when Schaal 
et al. [15] introduced an innovative damage detection algorithm founded on the Hilbert 
transform of guided ultrasonic waves, which consequently enables automated time-of- 
flight analysis for precise defect localisation in multi-wire cables through distinctive wave 
packet identification. Furthermore, their comprehensive study not only assessed second 
harmonic waves but also conducted extensive amplitude comparisons against a hybrid 
finite-boundary element model, with their findings subsequently validated through 
rigorous laboratory experiments on both single and multi-wire systems. 
Complementing this research, Raijutis et al. [16] developed a sophisticated ultrasonic- 
guided wave (UGW) method that seamlessly integrates semi-analytical finite element 
(SAFE) modelling with 3D FE analysis to thoroughly investigate wave propagation 
modes, dispersion curves, and excitation regions in multi-wire steel ropes with polymer 
cores. Although their experimental validation demonstrated remarkable capability in 
identifying specific defective strands within the rope’s interior – a crucial aspect for 
assessing structural integrity under operational conditions – it is important to note that 
acoustic-based methods generally remain susceptible to environmental noise interfer-
ence and frequently necessitate complex signal processing algorithms to reliably differ-
entiate damage-related signals from background interference.

Furthermore, significant advancements in machine vision technology have substan-
tially enhanced defect detection capabilities in industrial applications. Zhang et al. [17] 
pioneered a sophisticated machine-vision methodology that incorporates a segmentation 
template specifically designed to accommodate the intricate structural characteristics of 
steel wire ropes. This innovative approach successfully segments individual strands even 
under severely challenging industrial conditions, including the presence of lubricants, oil 
contamination, and variable illumination environments. Moreover, their research intro-
duced a comprehensive defect detection framework that strategically utilises spatiotem-
poral grey sample sets for dynamic background modelling, consequently achieving 
remarkable accuracy and environmental adaptability for fracture detection in complex 
industrial settings. Building upon these developments, Huang et al. [18] systematically 
integrated surface image analysis with automated visual inspection – enhanced by 
a convolution neural network framework – to mitigate the subjectivity inherent in 
manual feature extraction. Their computer vision system not only demonstrated superior 
accuracy metrics but also achieved substantial improvements in processing efficiency 
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compared to conventional methodologies, thus establishing the considerable potential of 
automated visual technologies in industrial non-destructive testing applications. 
Nevertheless, it is crucial to acknowledge that vision-based methodologies remain fun-
damentally constrained by line-of-sight limitations and may exhibit reduced effectiveness 
in identifying internal or subsurface structural damage.

Given these inherent limitations in both acoustic and vision-based inspection techni-
ques, particularly in challenging environmental conditions and internal defect detection 
scenarios, there has been a significant shift towards the adoption of magnetic flux leakage 
(MFL) testing [19–21], which offers distinct advantages in comprehensively detecting 
both surface and subsurface defects. However, the efficient processing and systematic 
analysis of the substantial data volumes generated by MFL systems has emerged as 
a significant technical challenge-one that machine learning approaches are particularly 
well-positioned to address [7,22–24]. In this domain, Kim et al. [25] successfully devel-
oped an integrated approach that combined MFL signal analysis with convolution neural 
networks (CNNs) to achieve accurate defect recognition, drawing on the well-established 
effectiveness of CNNs in feature extraction and classification by utilising both time and 
frequency domain analyses. Subsequently, Yi et al. [26] made substantial contributions to 
the field by advancing the integration of spectral-normalised neural Gaussian processes 
with GoogLeNet to enhance defect detection in steel wire ropes; their method incorpo-
rated uncertainty quantification via spectral normalisation and Gaussian process layers 
to cater to safety-critical applications. This sophisticated approach transformed 1D 
magnetic flux leakage signals into 2D Gramian angular field images, delivering state-of- 
the-art performance in defect classification and out-of-distribution detection, as con-
firmed by careful ablation studies. Furthermore, Liu and Chen [27] employed a machine 
learning strategy that coupled MFL signal analysis with 1D CNNs – alongside Haar 
wavelet denoising and feature normalisation – to reach a testing accuracy of 98%, 
outperforming six traditional machine learning models in quantitative defect recognition 
while also highlighting limitations and suggesting future research directions. Liu et al. 
[28] introduced a hybrid conditional kernel SVM model, which achieved 91.7% classi-
fication accuracy and the shortest runtime among 12 machine learning models for wire 
rope defect recognition. Building upon these advances, Zhang et al. [29] proposed 
a quantitative identification method for detecting internal and external broken wires in 
steel wire ropes using continuous wavelet transform (CWT) and CNN, which automates 
fault information extraction from time-frequency images of magnetic flux leakage sig-
nals. The method eliminates complex signal processing and significantly improves 
detection accuracy and recognition performance compared to traditional methods. 
Similarly, Liu et al. [30] developed an MFL wire rope defect detection method that 
integrates an improved Hilbert transform with a long short-term memory (LSTM) neural 
network, achieving higher classification accuracy and faster runtime for multiple defect 
types under varied conditions.

Despite these significant technological advancements, machine learning meth-
odologies continue to be constrained by the availability and quality of training 
datasets. Consequently, the transformation of signals obtained from MFL into 
images for subsequent analysis through digital image processing techniques 
[31,32] has progressively emerged as a predominant strategy for enhancing detec-
tion accuracy and operational flexibility. In this context, Zheng and Zhang [33] 
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developed an innovative unsaturated magnetic excitation-based MFL device for wire 
rope inspection, utilising pseudo-colour imaging and maximum modulus localisa-
tion to enhance broken wire detection accuracy. Their methodology, which system-
atically extracts colour and texture features from MFL images, demonstrated 
superior portability and recognition rates compared to traditional systems, effec-
tively reducing errors through sophisticated image enhancement techniques. 
Furthermore, Zhou et al. [34] engineered an integrated signal-processing method 
that transforms multichannel MFL signals – collected via Hall sensor arrays – into 
images, subsequently applying digital image processing techniques such as oblique- 
directional resampling and median filtering to suppress strand and shaking noise. 
This comprehensive approach effectively mitigates signal attenuation and leverages 
multichannel fusion for noise-resilient fault diagnosis, thereby enhancing LF detec-
tion and localisation accuracy. Additionally, Liu et al. [35] implemented an 
advanced morphological image processing technique to convert MFL signals into 
images and suppress shaking noise through detailed analysis of lift-off distance and 
noise morphology, a method that not only reduces strand and shaking noise 
interference but also improves the signal-to-noise ratio for more precise defect 
localisation. Extending these developments, Pan et al. [36] introduced 
a sophisticated target-feature-oriented denoising method that enhances LF features 
via digital image processing to mitigate noise distortion in steel wire rope inspec-
tions, further developing a three-stage adaptive localisation framework based on 
disjoint region analysis to improve LF detection accuracy in denoised MFL images 
affected by distorted noise.

The main challenges for the reported methodologies are summarised as follows:

(1) The detection and analysis of low-amplitude faults poses significant challenges, 
particularly in scenarios where signal integrity is compromised by lift-off effects or 
when dealing with inherently weak defect signatures. This limitation is further 
exacerbated in industrial environments where variable operating conditions and 
complex structural geometries can further attenuate already diminished signals, 
making reliable fault identification exceptionally challenging without specialised 
methodological frameworks and enhanced signal processing techniques.

(2) Current noise reduction methodologies demonstrate critical limitations when 
ambient noise amplitudes approximate those of low-amplitude leakage fluxes, 
potentially resulting in the degradation or loss of vital fault signatures during 
signal processing. This challenge is particularly pronounced in industrial settings 
where multiple noise sources coexist, making it increasingly difficult to differenti-
ate genuine fault signals from background interference while maintaining signal 
fidelity through traditional filtering approaches.

(3) Existing localisation frameworks encounter substantial difficulties in establishing 
an optimal equilibrium between maximising detection accuracy and maintaining 
acceptable false omission rates, often resulting in procedural complexity that 
impacts practical implementation. This challenge is compounded by the need to 
process substantial volumes of data in real-time applications while ensuring 
reliable fault detection across varying operational conditions and defect types, 
necessitating more sophisticated yet efficient algorithmic approaches.
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Previous research endeavours in this domain have put forth a diverse array of metho-
dological approaches for both noise reduction and the precise localisation of LFs. 
Nevertheless, a particularly challenging scenario emerges when dealing with LFs of 
diminished magnitude, which may manifest either due to the intrinsic weakness of the 
LFs itself or through lift-off effects that subsequently attenuate the signal strength. 
Furthermore, in circumstances where the amplitude of ambient noise approximates 
that of these lower-magnitude LFs, conventional noise reduction techniques may inad-
vertently compromise the integrity of the LFs signals, thereby substantially impeding 
subsequent localisation procedures. Additionally, while current localisation methodolo-
gies have made significant strides, they frequently encounter difficulties in establishing 
an optimal equilibrium between detection accuracy and acceptable false omission rates, 
often resulting in procedural frameworks of considerable complexity. In response to 
these multifaceted challenges, this research systematically examines the distinctive char-
acteristics of lower-amplitude LFs and proposes an innovative methodological frame-
work designed to achieve enhanced detection rates. The fundamental scholarly 
contributions of this research can be delineated as follows:

(1) A novel multi-channel magnetic signal pre-processing framework is proposed that 
enhances weak leakage flux signals through adaptive channel-wise feature extrac-
tion. By systematically analysing and combining complementary information 
from multiple magnetic sensors, this approach effectively amplifies weak damage 
signatures while maintaining their essential characteristics, even under challen-
ging lift-off conditions.

(2) An innovative scale transformation and channel fusion methodology is developed 
that optimally combines multi-channel magnetic leakage signals at different 
scales. This approach effectively suppresses environmental noise while preserving 
damage-related features, resulting in enhanced signal quality and improved detec-
tion capability for various types of defects in steel wire ropes.

(3) A robust damage localisation algorithm is presented that integrates the enhanced 
multi-channel magnetic flux signals with optimised template matching. By lever-
aging the distinctive magnetic leakage patterns associated with different damage 
types, this method achieves superior detection accuracy and computational effi-
ciency while maintaining low false alarm rates in steel wire rope inspection.

This research is organised into three interconnected sections that progressively build 
upon each other to address the challenges of defect detection in steel wire rope systems. 
Initially, Section 2 establishes the theoretical foundation by conducting an in-depth 
examination of Magnetic Flux Leakage (MFL) signal characteristics and Local Flaws 
(LFs) detection mechanisms, while also exploring their intricate relationships within steel 
wire rope infrastructures. Subsequently, Section 3 introduces and thoroughly details our 
novel multi-channel fusion scale transformation and signal enhancement framework, 
which encompasses several sophisticated components, including adaptive signal ampli-
tude mitigation strategies, advanced contrast enhancement techniques, and innovative 
channel fusion methodologies that work synergistically to improve detection accuracy. 
The investigation culminates in Section 4, where we present an extensive experimental 
validation study and rigorous performance analysis that not only demonstrates the 
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robust effectiveness of our proposed methodology in detecting and precisely localising 
LFs under various challenging operational conditions, but also provides detailed com-
parative analyses against contemporary state-of-the-art approaches to quantitatively 
establish the advantages of our method. Finally, Section 5 summarises the key findings, 
discusses the broader implications of our research, and outlines promising directions for 
future investigation.

2. Literature review and theoretical framework

This section presents a comprehensive examination of the existing research foundations 
and theoretical underpinnings that form the basis of this study. The discussion is 
systematically organised into two fundamental aspects: First, we explore the character-
istics and behaviour of magnetic flux leakage signals in steel wire ropes (detailed in 
section 2.1), followed by an in-depth analysis of the distinguishing features associated 
with local flaws (elaborated in section 2.2). This structured approach enables a thorough 
understanding of both the theoretical framework and its practical applications.

2.1. Magnetic zux leakage signal characteristics in steel wire rope systems

The fundamental architectural framework of the detection apparatus is inherently rooted 
in Magnetic Flux Leakage (MFL) detection methodology [37], wherein the detection 
mechanism generates a concentrated internal magnetic field upon encircling the steel 
wire rope. When traversing structural irregularities, the system produces distinctive MFL 
signal patterns, which are systematically captured through an advanced 16-channel Hall 
sensor array system, enabling precise spatial localisation of Local Flaws (LFs). The Hall 
sensor array, strategically configured along the circumferential direction, enables quan-
titative measurement of radial MFL signals through the Hall effect principle, converting 
magnetic fluctuations into electrical signals while ensuring comprehensive rope cover-
age. By maintaining uniform velocity during data collection, the system achieves tempo-
rally equidistant sampling, thereby ensuring consistent data acquisition and enabling 
precise spatial positioning of detected flaws within the Steel Wire Rope (SWR) through 
sophisticated computational algorithms. Furthermore, the system’s adaptability permits 
varying collection speeds across different processes, enhancing dataset diversity while 
maintaining measurement accuracy through advanced signal processing techniques and 
pattern recognition methodologies.

The post-acquisition processing of MFL data involves a systematic transformation of 
electrical signals into high-resolution images through several critical stages, ultimately 
achieving enhanced defect localisation precision. Initially, the trend components are 
methodically eliminated from the signal array, followed by the careful concatenation of 
16-channel signals and their subsequent segmentation into discrete lengths of H samples. 
Finally, through the application of sophisticated cubic spline interpolation techniques, 
the resolution is substantially enhanced from 16 to K points in the channel direction, 
effectively transforming the extended data segments into high-fidelity H ! K pixel 
images [36].
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2.2. Characteristic features and detection mechanisms of local zaws

In the context of radial-direction MFL detection using Hall sensors, LFs exhibit dis-
tinctive signal signatures characterised by a series of adjacent peaks and valleys, occa-
sionally manifesting with supplementary peak or valley formations [34]. This 
characteristic pattern has emerged as one of the most reliable and widely implemented 
indicators for LF detection using MFL methodology. However, it is important to note 
that these signal patterns are susceptible to various forms of interference, including but 
not limited to strand noise and mechanical vibration-induced disturbances. 
A particularly challenging aspect of this detection paradigm relates to the lift-off effect, 
which introduces multiple complexities into the detection process. This phenomenon not 
only exacerbates the difficulty of noise elimination but can also result in the attenuation 
of LF signal amplitudes, thereby significantly increasing the complexity of accurate 
detection and characterisation.

Contemporary research approaches have undergone a significant paradigm shift, 
moving away from conventional methodologies that relied on sequential denoising 
followed by LF detection. Instead, modern approaches directly leverage the intrinsic 
features of LFs, employing sophisticated template matching algorithms to identify 
regions exhibiting characteristic signal patterns. These advanced techniques are comple-
mented by various threshold determination methods, ultimately enabling more precise 
and reliable localisation of LFs.

3. A novel framework for multi-channel fusion scale transformation and 
signal enhancement

This section presents a comprehensive methodological framework for multi-channel 
fusion scale transformation and advanced signal processing, as illustrated in Figure 1. 
The proposed approach systematically integrates multiple sophisticated processing 
stages: Initially, high-amplitude signals undergo systematic suppression through adaptive 
thresholding, followed by advanced contrast enhancement operations. Subsequently, the 
processed signals are reconstructed through innovative channel shuffling and fusion 
techniques, ultimately facilitating precise defect localisation through optimised bright-
ness value analysis and spatial mapping. The transformed MFL signal scale undergoes 
a dual adjustment: cubic spline interpolation up-samples the original 16-channel signals 
to M ! N dimensions, while amplitude normalisation and channel shuffle-fusion opera-
tions enhance feature-scale contrast, collectively enabling precise LF detection via inte-
grated spatial and feature-scale transformation. This scale-driven framework is detailed 
in 3.1 and 3.3, where the interpolation and fusion mechanisms synergistically resolve 
low-amplitude defect signatures amid complex noise.

3.1. Adaptive signal amplitude mitigation and enhancement strategy

In the context of defect detection utilising Magnetic Flux Leakage (MFL) signals, the 
identification of low-amplitude Local Flaw (LF) signatures presents significant chal-
lenges, particularly when these signatures are situated in proximity to high-amplitude 
LF regions. This challenge is further compounded when the low-amplitude signals result 
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from either inherently smaller defects or lift-off effects [38], especially in environments 
characterised by strong and distorted noise patterns. Conventional threshold-based 
detection methodologies attempting to identify such subtle LF signatures frequently 
result in false positive classifications, wherein noise artefacts are erroneously identified 
as defect indicators. To address these limitations, our framework implements a two-stage 
approach: First, we establish a systematic procedure for identifying and marking the 
spatial coordinates of high-amplitude LF signatures, followed by selective amplitude 
suppression to enhance the visibility of low-amplitude features. While this methodolo-
gical approach effectively enhances the prominence of smaller LF signatures, it intro-
duces an additional technical challenge: certain noise components may exhibit amplitude 
characteristics that closely parallel those of the target low-amplitude LF signals. This 
similarity necessitates the implementation of sophisticated denoising algorithms and 
advanced signal differentiation methodologies, which are comprehensively detailed in 
subsequent sections of this analysis.

Given the original signal, defined as x"p; q# for the p-th channel at the q-th sample, 
where p $ 1; 2; . . . ; P and q $ 1; 2; . . . ;Q, with P $ 16 in this implementation corre-
sponding to the 16-channel Hall sensor array, Q depends on the length of the test SWR, 
the velocity during the sampling process, and the number of repetitions of the acquisition 
process. The signal processing procedure consists of several sequential operations, 
beginning with a moving average filter and culminating in matrix segmentation. 
Initially, a moving average filter is applied to extract the trend component, which can 
be expressed as: 

Figure 1. Architectural overview of the proposed multi-channel fusion scale transformation 
framework.
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Subsequently, we compute the detrended signal by subtracting the trend component 
from the original signal: 

where S represents the window size in the moving average filter, a"p; q# denotes the 
smoothed signal obtained through the application of the moving average filter to x"p; q#, 
and b"p; q# corresponds to the detrended signal component.

Following this initial detrending step, the next processing stage implements a rigorous 
signal normalisation protocol. This protocol systematically maps the entire amplitude 
spectrum to a standardised range of "%1; 1#: 

where h"p; q# represents the processed signal after applying the normalisation proto-
col, bmin and bmax represent the minimum and maximum values of b"p; q#, respec-
tively. This normalisation procedure reveals that, notwithstanding the presence of 
various high-amplitude noise components, numerous defect signatures maintain dis-
tinct identifiability, thus enabling direct localisation at the signal level, as empirically 
demonstrated in Figure 1. Through comprehensive empirical analysis and iterative 
validation, an optimal threshold value of L $ 0:4 was established, achieving an 
optimal balance between reliable LF detection and noise rejection, whereby signal 
values with absolute magnitude exceeding L are set to zero. This processed signal, 
denoted as y"p; q#, can be formally defined as: 

here, y"p; q# denotes the thresholded signal value for the p-th channel at the q-th sample 
point.

The thresholded signal matrix of dimensions P ! Q, we proceed to interpolate the 
data from the original P channels to M channels. For each sample index q $ 1; 2; . . . ;Q, 
the interpolation process involves the following steps: 

where yq represents the column vector corresponding to sample q, !m denotes the uniformly 
distributed interpolation points along the channel dimension within "1;P#, and j represents 
the cubic spline interpolation function that estimates the signal value at !m based on yq, 
z&m; q’ represents the interpolated signal value at the m-th channel for the q-th sample.
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The resulting interpolated matrix Z can be expressed in its complete form as: 

To facilitate subsequent analysis and detection procedures, matrix Z is partitioned into 
sub-matrices of size M ! N, where N = M in this implementation. For each column block 
index i $ 1; 2; . . . ; Q

N
! "

, the corresponding sub-matrix Zi is extracted as: 

where xd e denotes the ceiling function that maps L to the smallest following integer.

3.2. Enhancement and characterization of local zaws features

The application of maximum mitigation techniques reveals previously subtle LFs; never-
theless, the persistent presence of various noise types, particularly mechanical shaking 
noise and lift-off effect anomalies, continues to pose significant challenges in distinguish-
ing authentic LF signals. The pronounced shaking noise, which substantially interferes 
with subsequent analytical methodologies, necessitates a targeted elimination approach. 
Consequently, we implemented the sophisticated denoising algorithm developed by Ren 
[21], which, despite the presence of minor signal distortions, effectively suppresses the 
pervasive shaking noise across all measurement channels, as evidenced by comparative 
analysis before and after denoising implementation.

The quantitative efficacy of this denoising protocol is clearly demonstrated through 
the juxtaposition of Figure 1(a-c,d-f). Although Ren’s methodology proves highly effec-
tive in eliminating prominent shaking noise, it inevitably introduces a degree of signal 
amplitude attenuation. This secondary effect particularly impacts the detection and 
differentiation of low-amplitude LFs, which inherently possess minimal signal ampli-
tudes. These low-amplitude LFs typically exhibit several distinctive characteristics that 
facilitate their identification: 1) Limited channel occupation, 2) Relatively enhanced 
signal strength post-Maximum Mitigation, and 3) Characteristic morphology featuring 
closely spaced peaks and valleys, with a consistent pattern of at most one valley between 
adjacent peaks or one peak between adjacent valleys.

The spatial relationship between regions of extreme intensity is quantified through the 
Euclidean distance metric, defined as: 

where &rmax; cmax’ and &rmin; cmin’ represent the row and column indices corresponding 
to the maximum intensity point Cmax and minimum intensity point Cmin, respectively. 
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This metric provides a fundamental measure of the spatial separation between regions of 
contrasting brightness within the image matrix, expressed in pixel units.

The algorithm implements a distance-based decision criterion whereby the computed 
Euclidean distance d is compared against a predetermined threshold k $ 15. In cases where 
d > k, the algorithm terminates without further modification to preserve the original image 
characteristics. However, when the spatial proximity criterion is satisfied (i.e. d ( k), the 
algorithm proceeds to analyse circular regions of diameter D $ 40 pixels centred at both 
extremal points. Within these regions, pixels whose intensity values fall within the interval 
"I ) Cmin; I ) Cmax#, where I $ 0:4 serves as an intensity scaling parameter, are candidates 
for brightness adjustment. Furthermore, to ensure robust noise discrimination and main-
tain structural coherence, the algorithm specifically targets connected pixel clusters while 
excluding isolated pixels that may represent spurious noise artefacts.

The circular region RD&p’ centred at point p (representing either Cmax or Cmin) is 
formally defined as: 

where k ) k2 denotes the Euclidean norm. This formulation establishes a bounded circular 
domain within which subsequent intensity analysis is conducted.

The subset of pixels eligible for brightness adjustment is characterised by: 

where this set A&p’ includes only those pixels within RD&p’ whose intensity values 
Zi&m; n’ fall within the specified range determined by the scaling factor I applied to 
the minimum and maximum intensity values.

To ensure structural integrity and mitigate the impact of noise, the algorithm 
incorporates connectivity constraints through the identification of maximal connected 
components. Given a binary mask B, the largest connected component Cmax&B’ is 
defined by: 

where C&B’ represents the set of all connected components, and jCj denotes the cardin-
ality of component C. The corresponding pixel coordinates are collected in: 

The final brightness adjustment transformation is implemented through the following 
piecewise function: 

where Zi&m; n’ and Zo&m; n’ denote the intensity values at pixel coordinates &m; n’ for 
the input and output images, where H and L denote binary masks corresponding to high- 
intensity and low-intensity regions, respectively. This transformation selectively doubles 
the intensity of pixels belonging to the largest connected components while preserving 
the original values of non-selected pixels, thereby maintaining the image’s structural 
integrity while enhancing local contrast.
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3.3. Channel ShuSe and fusion

While the preceding contrast enhancement phase has successfully amplified the visibility 
of structural defects within the image, the persistent presence of distorted strand noise 
coupled with subtle mechanical vibration-induced artefacts necessitates the implementa-
tion of a more sophisticated localisation methodology. To address these challenges 
comprehensively, this paper introduces an innovative approach incorporating channel 
shuffling and reconstruction mechanisms, specifically designed to mitigate the impact of 
these traditionally intractable noise patterns, thereby facilitating more robust defect 
detection. Building upon the theoretical framework established by Zhou et al. [34] in 
Section 2, the initially acquired 16-channel electromagnetic signals undergo a systematic 
process of interpolation and segmentation. This process effectively partitions the com-
prehensive signal into a sequence of M ! N pixel images, substantially enhancing the 
spatial resolution of the acquired data. Each resultant image can be mathematically 
conceptualised as a M ! N matrix, wherein individual pixel intensity values correspond 
directly to matrix elements. In this configuration, each row represents a distinct channel, 
while columns correspond to sequential samples. The physical position of these samples 
on the SWR depends on the inspection velocity during each detection cycle.

The proposed methodology implements a novel channel fusion approach wherein 
each row of the numerical matrix undergoes multiple iterations of random permutations. 
The cumulative results of these successive permutations are systematically integrated to 
achieve optimal channel fusion and reconstruction, as comprehensively illustrated in 
Figure 1. Empirical observations demonstrate that post-Channel Shuffle and Fusion 
processing, the characteristic features of LFs exhibit notably improved spatial distribu-
tion across all channels, manifesting as well-defined peaks and valleys, while simulta-
neously achieving significant attenuation of random noise components, thereby 
substantially reducing the complexity of subsequent identification procedures. 

Consider the matrix Zo of dimension M ! N, where each element aij represents 
a distinct feature coefficient. In order to enhance the robustness of our analysis and 
mitigate the effects of localised anomalies, we implement a systematic permutation 
procedure. Specifically, for each row i, we apply independent random permutations Pi 
to generate a new matrix Zo0 , as illustrated below: 
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Subsequently, this permutation process is iterated j times, yielding a sequence of 
matrices Z&k’o for k $ 1; 2; . . . ; j. These matrices are then aggregated through summation 
to produce the final fusion matrix: 

Through this iterative permutation and aggregation process, the resultant matrix 
I $ Zfusion demonstrates notably improved characteristics, particularly in terms of the 
spatial distribution of LFs. Moreover, this methodology effectively attenuates random 
noise components while preserving the essential structural information, thereby enhan-
cing the reliability and interpretability of the feature representation.

3.4. Localization of local zaws through template matching analysis

This critical stage implements a sophisticated dual-approach methodology, combining 
template matching techniques with mean brightness value analysis to precisely determine 
the spatial coordinates of LFs within the target image. The process begins with the 
application of Gaussian filtering as a preliminary preprocessing step, which serves to 
enhance image smoothness and amplify the contrast between distinct brightness regions, 
thereby establishing a more robust foundation for subsequent analytical procedures.

Following this initial pre-processing phase, the algorithm proceeds with a template-based 
analysis that accounts for the inherent binary nature of LF manifestations. Given that LFs 
characteristically present themselves as either a light-to-dark or dark-to-light transition 
region, the methodology necessitates the implementation of two complementary symmetric 
templates to comprehensively capture these bidirectional variations. In accordance with the 
dimensional constraints established in Section 3.3, these templates must maintain a vertical 
dimension of H (where H $ M by definition), while the horizontal extent of each brightness 
region typically encompasses approximately W units, with an additional unit-width transi-
tion zone to accommodate gradual brightness variations. These geometric and photometric 
requirements can be formally expressed through the following matrix representations: 

For the implementation of template matching, I represents the matrix obtained from 
the process described in Section 3.3, with dimensions M ! N, this matrix denotes the 
input image for subsequent processing and analysis. And let T1 and T2 denote the 
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respective template matrices, each sized H ! &2W * 1’. The methodology employs 
Normalized Cross-Correlation (NCC) as the primary matching metric, chosen for its 
robustness to intensity variations and superior performance in pattern recognition tasks. 
The NCC computation is formally defined as: 

In this formulation, CTp&m; n’ represents the normalised correlation coefficient 
between template Tp and the corresponding local region within image I at coordinates 
&m; n’. The terms Imn and Tp denote the mean values of the local image region and 
template, respectively, ensuring normalisation across varying brightness conditions.

The correlation results undergo systematic binary classification through a threshold- 
based discrimination process, which can be formally expressed as: 

where W represents a carefully calibrated threshold parameter that discriminates between 
significant and insignificant correlation responses. The resulting binary map Bp&m; n’
maintains dimensional consistency with the original input matrix I. The final detection 
map is synthesised through the logical fusion of both template responses, effectively 
capturing all potential LF manifestations regardless of their orientation. 

Following the implementation of dual-template matching for initial LF localisation 
and considering the aforementioned preprocessing steps, it becomes feasible to exploit 
the intrinsic brightness characteristics of the regions of interest. Notably, in the absence 
of Channel Shuffle and Fusion operations, the precise determination of the LF’s dimen-
sional parameters (width, height) and channel positions within the image matrix remains 
ambiguous, consequently leading to computationally intensive operations and dimin-
ished verification accuracy. However, the preliminary processing framework enables the 
optimal utilisation of average brightness analysis. This methodology encompasses the 
systematic partitioning of the image into fixed-width regions, followed by the computa-
tion and hierarchical ranking of regional brightness averages, ultimately facilitating the 
identification of regions exhibiting extreme brightness values and their spatial relation-
ships. The integration of this brightness-based analysis with the previously identified 
high-response regions from template matching enables a comprehensive evaluation 
framework for definitive LF position determination through intersection analysis.

Given the input image matrix I, the systematic regional partitioning and subsequent 
average brightness computation can be mathematically expressed as: 
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where W represents the width of the sliding window operator, and At denotes the average 
brightness value computed for the t-th region, initiating at column tW and extending over W 
columns. Subsequently, the algorithm performs a comprehensive sorting operation on the set 
of average brightness values At to identify the k highest and lowest intensity regions, denoted 
as sets Hk and Lk respectively. The methodology specifically considers regions within Hk and 
Lk that exhibit spatial overlap or adjacency as potential LF positions, formally defined as 
A&m; n’, where m and n represent the respective row and column indices.

The final LF localisation result is achieved through the logical integration of both 
detection methodologies, formally defined as: 

where F&m; n’ represents the definitive spatial location of the LF within the image matrix.

4. Experimental validation and performance analysis

This section presents a comprehensive validation and rigorous experimental analysis of 
the Multi-Channel Fusion Scale Transformation (MCFST) method’s effectiveness, focus-
ing particularly on its capabilities in detecting and characterising challenging Local Flaws 
(LFs) that manifest with lower amplitude signatures. Furthermore, the validation process 
encompasses both quantitative and qualitative assessments to establish the method’s 

Algorithm 1 Multi-channel Fusion Scale Transformation (MCFST) for Local Flaw Detection
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robustness and reliability under various operational conditions simulating critical indus-
trial field inspection scenarios, including variable operational speeds, circumferential 
orientations, and controlled jitter. Additionally, through systematic investigation and 
comparative analysis with conventional detection approaches, this study demonstrates 
how the MCFST method addresses the longstanding challenges associated with weak 
signal detection in Steel Wire Rope (SWR) inspection systems across diverse applications 
like elevators, mining equipment, and bridges. Moreover, the experimental framework 
incorporates multiple test scenarios and environmental variables specifically designed to 
simulate real-world challenges such as lift-off effects and complex noise environments to 
ensure comprehensive evaluation of the method’s performance in real-world applica-
tions, thereby providing substantial evidence for its practical utility in industrial deploy-
ment. The subsequent analysis not only validates the theoretical foundations of the 
MCFST approach but also establishes its superiority in enhancing the detection sensi-
tivity and accuracy for subtle structural anomalies that have traditionally posed signifi-
cant challenges in non-destructive testing protocols.

The MFL detection method for SWRs functions by identifying magnetic field anoma-
lies at defect locations within magnetised ropes. The detection system employs Hall 
sensors to pinpoint these defect positions with precision. As illustrated in Figure 2(a), the 
detector comprises a sensor system architecture that includes two concentric permanent 
ring magnets with radial magnetisation, magnetic yokes, and sensor arrays. The magne-
tisation system incorporates these custom-engineered ring magnets and yoke magnetic 
bridges that encircle the SWR, establishing a magnetic circuit that drives the rope to 
magnetic saturation. This saturation condition is crucial for generating detectable MFL 
signals at defect sites. The test rig configuration, shown in Figure 2(b), reveals the internal 
sensor arrangement consisting of two semicircular PCB circuit boards equipped with 16 
uniformly distributed Hall sensors spaced at 22.5° intervals to capture radial MFL signals. 
During operation, analog voltage outputs from the Hall sensor array are digitised in real- 
time by a 16-bit analog-to-digital converter with 5 V dynamic range. The digitised 
multichannel data is streamed to an embedded computing unit where axial position is 
synchronised with encoder pulses to correlate temporal signals with spatial coordinates 
along the rope’s longitudinal axis. The experimental setup utilises two test specimens: 
a 32mm diameter SWR and a 30mm diameter SWR, each containing four artificially 
created broken wire LFs. These manufactured defects vary in severity, spanning from 
single wire breaks to 3.5 broken wires, providing a range of test conditions for system 
validation. The practical inspection scenarios, as depicted in Figure 2(c), demonstrate the 
field deployment of the MFL test rig.

In the context of rigorous field testing protocols, the MFL acquisition process is 
meticulously controlled through three critical operational variables: the detector’s long-
itudinal movement speed along the SWR, its precise circumferential orientation relative 
to the rope’s central axis, and the frequency of intentionally induced rope jittering. To 
systematically evaluate the system’s performance across a spectrum of inspection velo-
cities, the detector is operated at three carefully selected speeds F 0.5 m/s, 1 m/s, and 1.5  
m/s – while maintaining consistent measurement parameters. Furthermore, the circum-
ferential orientation is methodically controlled by rotating the detector around the 
SWR’s circumference, whereby measurements are acquired at precise 30 intervals, thus 
generating 12 comprehensive datasets that collectively encompass the rope’s entire 
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circumferential profile. Additionally, to simulate various real-world vibration conditions 
that may be encountered during actual inspections, rope jittering is systematically tested 
across a controlled frequency range spanning from 0 to 3. It should be noted that to 
ensure comprehensive data collection, we also test speeds at 0.1 m/s increments around 
each baseline value (0.5 m/s, 1 m/s, and 1.5 m/s) and systematically sample jitter frequen-
cies at 0.5 intervals across the entire 03 range. This approach will provide a more 
complete understanding of the system’s performance under varied operating conditions.

Table 1 provides comprehensive visual documentation and systematic severity classifi-
cation of structural damage patterns observed in the SWR specimens, whereby each 
specimen consistently manifests two distinct LFs. The primary defect is predominantly 
characterised by severe structural deterioration, which encompasses either complete wire 
breakage or substantial cross-sectional reduction, whereas the secondary defect exhibits 
relatively milder forms of degradation. In order to rigorously validate the experimental 
findings and establish robust correlations, we conducted detailed analyses of three char-
acteristic signal segments, with each segment containing 200 discrete sampling points 
(although it should be noted that due to inherent variations in data collection speeds, the 
physical distances represented by these sample points may exhibit some variability across 

Figure 2. (a) Schematic overview of the magnetic flux leakage (MFL) detection system architecture, (b) 
detailed view of the MFL test rig configuration showing internal sensor arrangement, (c) field 
deployment of the MFL test rig during practical inspection scenarios.
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different datasets), as comprehensively illustrated in Figure 3(a) through (c). Furthermore, 
these carefully selected signal segments demonstrate direct and unambiguous correspon-
dence to the three distinct damage configurations meticulously documented in Table 1, 
thereby establishing a clear and quantifiable relationship between the observed physical 
damage patterns and their associated electromagnetic signal responses. Through the 
application of the transformation algorithms defined in Eq.(5),(7), these temporal signals 
were subsequently converted into two-dimensional spatial representations with dimen-
sions of 200! 200 pixels, as illustrated in Figure 3(d–f).

Critical examination of the three signal segments reveals that each contains 
a prominent LF signature with substantial amplitude, accompanied by an adjacent, 
significantly attenuated LF signal. Conventional detection methodologies frequently 
fail to identify these lower-amplitude anomalies due to their diminished signal strength. 
To address this limitation, we implemented Maximum Mitigation preprocessing on the 
dominant amplitude signals according to Equation (3~4), with results demonstrated in 
Figure 4(a-c). While this procedure successfully amplifies the LF signatures, it concur-
rently increases the noise floor, necessitating additional signal-to-noise ratio 
enhancement.

Analysis of Figure 4(a-c) reveals distinct characteristic differences between LF signa-
tures and noise components. LF signals consistently exhibit greater amplitude magnitude 
and demonstrate spatial continuity and adjacency, whereas noise components lack these 
defining characteristics. Leveraging these discriminative features through the application 
of Equation (10-15), we achieved enhanced LF signal definition while preserving original 
noise characteristics, as illustrated in Figure 4(d-f). This enhancement significantly 

Table 1. Specifications of the LFs.

No. LF1
Length of the 

LF LF2
Length of the 

LF
1 5mm 3 mm

2 3mm 5 mm

3 4.5mm 3 mm
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improves the signal-to-noise contrast ratio, thereby facilitating subsequent processing 
and precise LF localisation.

The final stage implements Channel Shuffle and Fusion operations according to 
Equation (10-18). Comparative analysis between Figure 4(d–f,g–i) demonstrates the 
efficacy of this approach. Through this process, LF signatures achieve uniform distribu-
tion across all channels, substantially minimising noise interference and enabling sim-
plified defect localisation methodologies in subsequent processing stages.

Following the multi-channel processing stages, precise LF localisation is executed 
utilising Eq. (21) through Eq. (25). Subsequently, the spatial coordinates of the previously 
identified and Mitigated LF signals are systematically mapped onto the resultant image. 
This comprehensive approach facilitates the accurate identification of all LF features, 
with the final localisation outcomes clearly demonstrated in Figure 5(d1) through (d3).

To rigorously evaluate and validate the effectiveness of our proposed methodology, we 
conducted extensive comparisons against three widely-adopted LF detection approaches: 
the Canny Edge Detection (CED) algorithm [32], the Constant Threshold (CT) method 
[35], and the Adaptive Threshold (AT) technique [36]. For the three distinct signal 
segments illustrated in Figure 3, we initially applied the target-feature-oriented denoising 
method [36] to enhance the signal quality prior to final localisation using the aforemen-
tioned three methods. While both the Canny Edge Detection and Constant Threshold 
methods successfully identified all LF features, they simultaneously generated substantial 
false positives, thereby significantly compromising the reliability of actual defect identi-
fication, as evidenced in Figure 5(a1) through (b3). Although the Adaptive Threshold 
method generally demonstrates superior robustness under standard conditions, it 
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Figure 3. Comparative visualization of signal transformation: (a),(c) original MFL signals containing 
dual LF signatures; (d),(f) corresponding interpolated image representations.
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exhibits notable limitations when confronted with scenarios involving small-amplitude 
LF defects adjacent to large-amplitude ones, frequently failing to detect the smaller 
defects, as shown in Figure 5(c1) through (c3). In contrast, our proposed method 
effectively addresses these limitations, achieving precise defect localisation while mini-
mising false positives, as depicted in Figure 5(d1) through (d3).

In order to validate the practical effectiveness of our proposed methodology, we 
conducted comprehensive performance testing by processing three distinct signal seg-
ments, which are illustrated in Figure 4(a–c), through our detection framework. The 
experimental computations were executed on a standardised testing platform that con-
sisted of an Intel Core i5-9300 H processor operating at 2.40-GHz, complemented by 16 
GB of system memory, and running under the Windows 11 64-bit operating environ-
ment. The computational analysis revealed that the processing durations required to 
generate the detection outcomes, as depicted in Figure 5(d1–d3), were 0.51 seconds, 
0.73 seconds, and 0.61 seconds respectively, yielding an average processing time of 
approximately 0.62 seconds per signal segment. These empirical results demonstrate 
that our method exhibits robust computational efficiency, thereby making it particularly 
suitable for real-world implementations, especially considering that the processing per-
formance could be further enhanced through the utilisation of more sophisticated hard-
ware configurations or parallel processing architectures.
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Figure 4. Systematic visualization of the experimental processing procedure. (a),(c) post-maximum 
mitigation processed images. (d),(f) images following low-frequency feature enhancement. (g),(i) 
results after Channel ShuDe and feature fusion operations.
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To ensure a comprehensive and statistically significant evaluation, we utilised an 
extensive dataset comprising multiple signal segments containing 764 LF features. The 
comparative analysis of detection performance across all four methods is meticulously 
documented in Table 2 and visualised in Figure 6. The quantitative assessment reveals 
that while the Canny Edge Detection and Constant Threshold methods achieve 
reasonable detection rates, they are significantly compromised by excessive false 
positives, with the former generating an unprecedented 5865 false detections. The 
Adaptive Threshold method demonstrates markedly improved false positive control, 
recording only 80 such instances, though maintaining room for optimisation across 
all performance metrics. Our proposed methodology achieves superior results, suc-
cessfully identifying 748 true positives while maintaining minimal false positives and 
negatives.

The performance metrics – Precision, Recall, and F1 score – were calculated to provide 
a holistic evaluation of detection efficacy. These metrics, visualised in Figure 7, demon-
strate the substantial advantages of our proposed approach. While the Canny Edge 
Detection method’s extremely low precision results in an F1 score of merely 0.1548, 
and the Constant Threshold method achieves a modest 0.4512, the Adaptive Threshold 
method shows significant improvement with an F1 score of 0.9152. Notably, our pro-
posed methodology achieves the highest F1 score of 0.9765, substantiating its superior 
comprehensive performance across all evaluation metrics.
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Figure 5. Detection results comparison. (a1),(a3) detection results of Canny Edge detection (CED) 
algorithm method. (b1),(b3) detection results of Constant Threshold (CT) method. (c1),(c3) detec-
tion results adaptive Threshold (AT) method.(d1),(d3) detection results of proposed multi-channel 
fusion scale transformed (MCFST) method.
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Table 2. Quantitative performance assessment of diRerent methods.

Performance metrics CED method CT method AT method
MCFST 

method
Number of true positives 513 733 712 748
Number of false positives 5863 1752 80 20
Number of false negatives 251 31 52 16
Precision 8.75% 29.50% 89.90% 97.40%
Recall 67.15% 95.94% 93.19% 97.91%
F1 score 0.1548 0.4512 0.9152 0.9765

(a) (b)

(c) (d)

0 0

00

True Positives
False Positives
False Negatives

True Positives
False Positives
False Negatives

Figure 6. Quantitative analysis of detection performance metrics across methodologies. (a) Statistical 
distribution of true positives (TP), false positives (FP), and false negatives (FN) using Canny Edge 
detection (CED) algorithm. (b) Detection performance metrics utilizing Constant Threshold (CT) 
methodology. (c) Statistical outcomes from adaptive Threshold (AT) implementation. (d) 
Comprehensive detection metrics achieved through the proposed multi-channel fusion scale trans-
formed (MCFST) method.
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5. Conclusion

This research has successfully developed and validated a novel multi-channel fusion scale 
transformation approach for detecting and localising Local Faults in Steel Wire Rope 
systems. The innovative three-fold framework proposes morphological signal enhance-
ment, introduces an advanced Channel Shuffle and Fusion mechanism, and implements 
template matching with luminance characteristics, demonstrating exceptional capabil-
ities in addressing critical challenges in non-destructive testing. Experimental results 
confirm the method’s superior performance in detecting diminished-magnitude faults 
under challenging conditions, while maintaining computational efficiency. These newly 
proposed techniques provide a robust foundation for early fault detection across various 
industrial applications, significantly advancing the field of structural health monitoring.
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Figure 7. Multi-dimensional performance evaluation using radar chart visualization. (a) Triaxial 
representation of precision, recall, and F1 score for Canny Edge detection (CED) implementation. (b) 
Performance metric distribution for Constant Threshold (CT) methodology. (c) Three-dimensional 
performance analysis of adaptive Threshold (AT) approach. (d) Comprehensive performance metrics 
demonstration of the proposed multi-channel fusion scale transformed (MCFST) methodology, high-
lighting superior detection capabilities.
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However, while demonstrating significant advancements, the proposed method 
has several inherent limitations. The effectiveness depends heavily on the multi- 
channel Hall sensor array configuration, and residual noise components may still 
affect detection accuracy in extremely noisy operating conditions. Parameter 
tuning is required for different rope specifications, while signal processing may 
occasionally mask subtle fault indicators. Future work should focus on developing 
adaptive thresholding techniques, integrating machine learning for enhanced 
defect classification, validating the method’s efficacy for Loss of Metallic Area 
(LMA) and single broken wire defects, and optimising computational efficiency 
for real-time applications.
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