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ABSTRACT
Planetary gearboxes are critical components in a wide range of 
applications, including electric motors, automotive systems, and 
wind turbines. However, current fault diagnosis methods face sig-
nifcant challenges in accurately detecting faults due to the pre-
valence of large amounts of unlabelled data and interference from 
transient events. To address these issues, this paper proposes 
a novel Semi-Supervised Transfer Learning (SSTL) approach. SSTL 
integrates semi-supervised techniques with transfer learning and 
introduces innovative normalisation strategies to overcome the 
limitations of traditional methods, particularly in environments 
characterised by transient interference and limited labelled data. 
The proposed approach overs several key contributions: (1) a semi- 
supervised transfer learning model that evectively leverages unla-
belled data while mapping the source to the target domain, 
thereby enhancing fault detection accuracy, (2) a label migration 
and matching strategy that assigns pseudo labels to transient 
signals, addressing persistent challenges in signal processing, and 
(3) a limiting normalisation strategy designed to mitigate the 
evects of transient interference and stabilise vibration signals, 
thus improving the robustness of the model. Two case studies are 
presented to validate the evectiveness of SSTL, demonstrating its 
superiority over existing methods in terms of fault diagnosis accu-
racy and reliability, especially in scenarios with limited labelled data 
and frequent transient interference.
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1. Introduction

Planetary gearboxes are crucial components used in a wide range of applications, 
including electric motors, the automotive and aviation industries, wind turbines, and 
various other industrial environments. Their widespread use is primarily attributed to 
key advantages, such as high transmission ratios, compact design, and significant load- 
carrying capacity [1–3]. However, the gearboxes in these applications are often subject to 
varying speeds, dynamic loads, and harsh operating conditions, which can consequently 
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lead to localised failures such as wear, cracks, broken or damaged teeth, and pitting. 
Therefore, detecting and addressing these faults promptly is critical [4–7]. As a result, the 
development of advanced and effective fault diagnosis techniques is imperative. Not only 
are such techniques crucial for the early detection of potential issues, but they also ensure 
safe and reliable system operation, thereby enhancing overall system reliability. 
Furthermore, these advanced diagnostic methods can potentially reduce maintenance 
costs and extend the lifespan of planetary gearboxes across various industrial 
applications.

In recent years, data-driven-based fault diagnosis methods [8–12], particularly those 
incorporating deep learning techniques, have seen rapid and significant advancements. 
These advancements can be primarily attributed to the superior capacity of deep learning 
to automatically extract high-level feature representations from raw signals, thereby 
facilitating high-precision diagnostic predictions in an end-to-end manner. Over the 
past decade, numerous impressive algorithms based on deep learning have emerged, 
including but not limited to convolutional neural networks [13], generative net-
works [14,15], semi-supervised learning models [16,17], and self-supervised models 
[18]. To illustrate the effectiveness of these methods, several studies have significantly 
contributed to the field. For instance, Jamil et al. [19] propose a novel deep boosted 
transfer learning method for wind turbine gearbox fault detection, which effectively 
mitigates negative transfer by selectively focusing on relevant information from the 
source machine. This approach leads to enhanced accuracy compared to traditional 
deep learning and deep transfer learning methods. Similarly, Zhang et al. [20] introduce 
a nearly end-to-end deep learning approach for diagnosing wind turbine gearbox faults 
using vibration signals. Their method integrates Empirical Mode Decomposition (EMD) 
to improve model efficiency and generalisation, particularly under nonstationary work-
ing conditions. Furthermore, Chen et al. [21] present a physics-informed hyperpara-
meter selection strategy for Long Short-Term Memory (LSTM) neural networks, which 
aims to enhance fault detection in gearboxes by focusing on maximising the discrepancy 
between healthy and faulty states, rather than solely minimising validation mean squared 
error. Additionally, Zhang et al. [22] propose an intelligent fault diagnosis method based 
on an adaptive intraclass and interclass convolutional neural network (AIICNN). This 
method improves sample distribution and diagnostic accuracy by addressing variable 
working conditions through adaptive constraints.

Despite the impressive performance of deep learning-based methods, these 
approaches necessitate substantial amounts of labelled data for training, which presents 
challenges for fault diagnosis in real-world industrial applications. Consequently, exten-
sive research has been conducted on semi-supervised learning, aiming to leverage large 
quantities of unlabelled data to support and enhance the performance of deep learning 
models with limited labelled data. Zhang et al. [23] propose the Semi-Supervised 
Momentum Prototype Network (SSMPN), an advanced few-shot semi-supervised learn-
ing approach designed to improve gearbox fault diagnosis in scenarios with limited 
labelled samples. This method effectively utilises prototype networks to capture feature 
mappings, employs Monte Carlo uncertainty for refined pseudo-labelling, and incorpo-
rates momentum-based prototype fine-tuning to enhance model performance. Similarly, 
Zhao et al. [24] introduce a novel two-stage hybrid semi-supervised learning framework 
that integrates grouped pseudo-labelling with consistency regularisation. This method 
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addresses challenges related to teacher model accuracy and the limitations of data 
augmentation techniques for 1-D vibration signals, thereby significantly improving 
fault diagnosis accuracy in rotating machinery despite the constraints of limited labelled 
data. Furthermore, Xiao et al. [25] present a semi-supervised hybrid framework aimed at 
diagnosing converter transformers with limited labelled data. Their framework combines 
multi-feature graph generation, which encodes vibration signals into time, frequency, 
and energy graphs, with a blend of unsupervised and supervised learning strategies and 
soft voting decision-making. This comprehensive approach enhances intelligent fault 
diagnosis capabilities, even under challenging dataset conditions. Despite the notable 
effectiveness of semi-supervised learning-based methods in addressing the challenges 
associated with limited labelled data in fault diagnosis, three significant challenges 
persist, which warrant further investigation and methodological improvements.

(1) Pseudo-labelling Inaccuracy: The generation of pseudo labels for unlabelled data 
through data enhancement techniques often results in substantial deviations from 
true labels. Consequently, these inaccurate pseudo labels fail to positively influ-
ence the model’s feature extraction process and may even introduce noise or bias 
into the learning algorithm. This challenge underscores the need for more robust 
and accurate pseudo-labelling techniques that can better approximate the under-
lying data distribution.

(2) Limited Dataset Expansion: While methods for constructing data matching pairs 
partially address data scarcity, they offer only modest dataset expansion and fail to 
introduce entirely new samples. This limitation constrains the model’s ability to 
generalise to unseen data, particularly in scenarios where fault patterns exhibit 
high variability or complexity. As a result, the overall utility of these methods in 
enriching dataset diversity remains limited.

(3) Insufficient Leverage of Unlabelled Data: Despite advancements in semi- 
supervised learning, current methods do not fully exploit the potential of unla-
belled data in fault diagnosis tasks. This inefficiency stems from the combined 
effects of pseudo-labelling inaccuracies and limited dataset expansion. 
Consequently, there is a pressing need for innovative approaches that can more 
effectively leverage unlabelled data while simultaneously enhancing the quality 
and diversity of the training dataset.

Given the inherent limitations of semi-supervised learning, researchers have increasingly 
turned their attention to transfer learning, particularly those involving the fine-tuning of 
pre-trained models to achieve improved diagnostic performance. This shift in focus is 
largely due to the potential of transfer learning to overcome the constraints associated 
with limited labelled data and to leverage knowledge from related domains. For instance, 
Xiang et al. [26] introduce the Classifier Constrained Domain Adaptation Network 
(CCDAN), an innovative transfer unsupervised learning method designed to enhance 
rotor fault diagnosis by extracting transferable features from simulated samples and 
improving classification accuracy through the use of classifier constraints and multiple- 
kernel maximum mean discrepancy (MK-MMD). Furthermore, Sun et al. [27] propose 
a novel Cross-Domain Transfer Learning with Fine-Tuning Mechanism (CTL-FTM) for 
gearbox fault diagnosis, which effectively addresses challenges associated with 
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imbalanced datasets and the complexities of hyperparameter tuning by leveraging pre- 
trained models and shallow networks, leading to enhanced diagnostic accuracy and 
generalisation capability. However, under certain operating conditions, instantaneous 
fluctuations may arise, manifesting as transient disturbances within the vibration signal. 
These disturbances can adversely affect the stability and reliable performance of the 
equipment. It is crucial to acknowledge that when vibration signals encounter interfer-
ence, especially transient interference, the effectiveness of transfer learning methods 
frequently fails to meet anticipated results. This shortcoming highlights the imperative 
for continued research and development in this domain, as the current methods may not 
fully address the complexities introduced by such interferences.

However, if this unlabelled data can be effectively leveraged alongside a limited set of 
labelled data, there is significant potential to enhance the model’s performance, accuracy, 
and reliability. This approach aligns with the growing trend in machine learning towards 
leveraging large amounts of unlabelled data to improve model robustness and general-
isation. In the light of these challenges and the growing demand for more adaptive and 
efficient learning paradigms in industrial mechanical systems, a novel approach is 
proposed: SSTL. This method is specifically designed to address the issue of limited 
labelled data in the presence of transient interferences by integrating semi-supervised 
learning and transfer learning with novel normalisation strategies. The SSTL approach 
represents a synthesis of multiple machine learning paradigms, aiming to harness the 
strengths of each while mitigating their individual weaknesses. By combining the ability 
of semi-supervised learning to leverage unlabelled data with the knowledge transfer 
capabilities of transfer learning, SSTL offers a promising solution to the persistent 
challenges in fault diagnosis for planetary gearboxes.

The primary contributions of this paper can be summarised as follows:

(1) A novel SSTL framework is proposed, which adeptly incorporates the character-
istics of unlabelled data to enhance model training while simultaneously lever-
aging transfer learning techniques to map the source domain to the target domain. 
This innovative approach effectively addresses the critical challenge of low 
pseudo-label reliability in unlabelled data, thereby significantly improving the 
model’s detection accuracy. Furthermore, this framework bridges the gap between 
supervised and unsupervised learning paradigms, offering a robust solution for 
scenarios where labelled data are scarce.

(2) A label migration and matching strategy is introduced to facilitate label transfer 
and alignment between homologous signals. This strategy effectively addresses the 
critical challenge of accurately assigning pseudo labels to transient interference 
signals, which has long been a bottleneck in signal processing and machine 
learning applications. By employing this method, the model achieves a higher 
degree of precision in identifying and categorising transient phenomena, thus 
enhancing its overall performance and reliability.

(3) A novel limiting normalisation strategy is proposed to mitigate the impact of 
transient interference on the model and stabilise the characteristic scale of vibra-
tion signals. This innovative approach not only enhances the efficiency of the 
model training process but also enables the effective development of a fault 
detection model capable of withstanding transient interference. Consequently, 
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this strategy significantly improves the model’s robustness and generalisability, 
making it particularly suitable for real-world applications where signal noise and 
interference are prevalent.

The paper is organised as follows: In Section 2, a comprehensive review of the relevant 
literature on semi-supervised learning and transfer learning is provided, establishing the 
foundational concepts that underpin this research. Section 3 then elaborates on the 
details of the proposed SSTL approach, with a focus on preserving spatial homogeneity. 
Following this, Section 4 presents the experimental results obtained from two fault 
diagnosis datasets, offering a thorough analysis and comparison of the findings. 
Finally, Section 5 synthesises the key insights derived from the research and provides 
the concluding remarks of the study.

2. Preliminaries

2.1. Semisupervised learning

For the semi-supervised learning-based fault diagnosis, it is crucial to consider the nature 
and composition of the available data. Typically, the collected signals comprise two 
distinct datasets: a limited labelled dataset fxlabel

i gN
i!1 and a substantial unlabelled dataset 

fxunlabel
i gM

i!1. Within this framework, xi represents individual time series samples, each 
with a sequence length l, where i 2 f1; lg. The label fllabel

j gN
j!1 2 f1; 2; . . . ;Cg associated 

with the labelled dataset fxlabel
i gN

i!1 represents C distinct gear states. It is important to 
note that N and M denote the sizes of the labelled and unlabelled datasets, respectively, 
with the relationship N " M holding true, emphasising the scarcity of labelled data 
relative to unlabelled data.

To quantify the proportion of labelled data in the semi-supervised learning context, 
we introduce the labelling rate E, defined as the ratio of N to N #M. One of the primary 
objectives in this domain is to effectively leverage the abundant unlabelled data in 
fxunlabel

i gM
i!1 to enhance the model’s ability to fit the limited labelled data in fxlabel

i gN
i!1, 

thereby achieving performance levels that surpass those attainable through conventional 
supervised learning approaches. Concurrently, there is a strong emphasis on minimising 
E, as this directly translates to reduced time and cost associated with manual data 
annotation, an often resource-intensive process in real-world applications.

The landscape of semi-supervised learning methodologies can be broadly cate-
gorised into three distinct approaches, each with its own merits and challenges. The 
first approach, unsupervised pre-training, as exemplified by the works of Wang et al. 
[28] and Zhu et al. [29], involves an initial phase where the model learns representa-
tions from unlabelled data using unsupervised techniques, followed by a fine-tuning 
phase utilising the available labelled data. This approach leverages the abundance of 
unlabelled data to establish a robust foundation for feature extraction before refining 
the model with task-specific labelled data. The second category encompasses co- 
training methods, as demonstrated in the research of Zhang et al. [30], Li et al. 
[31], and Lee et al. [32]. These methods simultaneously train models using both 
labelled and unlabelled data, resulting in a composite loss function that combines 
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a supervised loss Ls and an unsupervised loss Lu. The unsupervised loss Lu typically 
quantifies the discrepancy between data distributions, computed from a large sample 
of data. The final loss L is formulated as a weighted sum of these components: 
L ! Ls # zLu, where z serves as a hyperparameter to balance the contributions of 
supervised and unsupervised learning objectives. The third approach, known as self- 
training, is exemplified by the work of Jiao et al. [33] and Pu et al. [34]. This iterative 
method begins by training the network on a small subset of labelled data. 
Subsequently, the trained model is employed to classify unlabelled samples, with 
those classified with high confidence being incorporated into the training set. This 
process is then repeated, gradually expanding the effective labelled dataset and refin-
ing the model’s performance.

2.2. Transfer learning

In the domain of transfer learning, existing methodologies can be broadly categorised 
into two primary approaches: statistically based methods and adversarially based 
methods. While both aim to improve the transferability of knowledge across 
domains, they employ distinct strategies to achieve this goal. The fundamental 
principle underlying statistically based transfer learning methods, as elucidated by 
Chen et al. [35] and Zhang et al. [36], is the pursuit of domain-invariant representa-
tions. This is typically accomplished by minimising the distribution divergence 
between the source and target domains. By doing so, these methods strive to create 
a shared feature space that is less sensitive to domain-specific variations, thus 
facilitating more effective knowledge transfer. On the other hand, adversarially 
based methods, such as those proposed by He et al. [37] and Wang et al. [38], 
draw inspiration from the innovative framework of Generative Adversarial Networks 
(GANs). GANs, characterised by their zero-sum game dynamics, have emerged as 
a promising machine learning paradigm. In the context of transfer learning, adver-
sarial approaches leverage this competitive mechanism to align features across 
domains.

To further illustrate the application of these concepts, Wang et al. [39] proposed 
a novel approach that utilises labelled data from both the source domain and 
a limited subset of the target domain. This method employs supervised training 
techniques for the feature extractor and classifier components. Additionally, to 
promote the learning of domain-invariant features, a discriminator is incorporated 
to align latent representations across domains. Addressing scenarios with extremely 
limited fault data, particularly in single-sample instances, Han et al. [40] introduced 
an innovative multi-domain discriminator. This enhancement aims to improve 
domain-invariant feature extraction, consequently boosting fault diagnostic perfor-
mance in resource-constrained environments. In contrast to the approach presented 
by Han et al. [40], Li et al. [41] developed a method that leverages multiple 
classifiers, utilising label information for more accurate fault prediction. 
Furthermore, their approach incorporates a discriminator to align features between 
the source and target domains, thereby enhancing the overall transferability of the 
learned representations.
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3. Semi-supervised transfer learning preserving spatial homogeneity

The proposed architecture is composed of four distinct yet intricately interconnected 
blocks, each fulfilling a critical function within the overarching framework: (1) a teacher- 
student model, (2) the construction of pseudo labels, (3) data matching with pseudo- 
labelling, and (4) normalisation with amplitude-limited. This innovative approach is 
designed to effectively leverage both labelled and unlabelled data in scenarios charac-
terised by a paucity of labelled instances, thereby enhancing model performance and 
generalisation capabilities. The integration of the teacher-student model paradigm, in 
conjunction with the pseudo-labelling technique, enables the architecture to efficiently 
utilise both labelled and unlabelled data. This methodology is particularly advantageous 
in contexts where labelled data is scarce or prohibitively expensive to obtain, as it 
facilitates the exploitation of abundant unlabelled data to augment performance and 
generalisation capabilities. Moreover, the iterative nature of this process, wherein the 
student model has the potential to assume the role of the teacher in subsequent iterations, 
engenders continuous refinement and adaptation of the model to evolving data 
distributions.

The teacher-student model serves as the cornerstone of knowledge transfer within the 
architecture, facilitating the propagation of learned representations from a more experi-
enced model (the teacher) to a less experienced one (the student). This transfer of 
knowledge accelerates the learning process and enhances the student model’s ability to 
generalise from limited labelled data. Concurrently, the construction of pseudo labels 
represents a crucial step in leveraging unlabelled data. By assigning probabilistic labels to 
unlabelled instances, this component effectively expands the training set, allowing the 
model to learn from a broader range of examples. The data matching process with 
pseudo-labelling further enhances the model’s ability to learn from unlabelled samples. 
By aligning the distributions of labelled and unlabelled data, this component ensures that 
the knowledge gained from pseudo-labelled instances is consistent with the underlying 
distribution of the labelled data. This alignment is critical for maintaining the integrity of 
the learning process and preventing potential biases that may arise from discrepancies 
between labelled and unlabelled data distributions. Finally, the normalisation with 
amplitude-limited components plays a crucial role in maintaining the stability and 
consistency of the learning process. By constraining the range of values within the 
network, this module mitigates the risk of exploding or vanishing gradients, which can 
impede effective learning. This normalisation process ensures that the model remains 
robust and stable throughout the training process, even when dealing with diverse and 
potentially noisy data sources.

The synergistic interaction among these components engenders a robust frame-
work capable of effectively learning from both labelled and unlabelled data. This, in 
turn, potentially leads to improved performance across various machine learning. The 
proposed approach may prove particularly beneficial in domains where the acquisi-
tion of labelled data is challenging or resource-intensive, such as medical imaging, 
natural language processing, or autonomous systems. The holistic framework of this 
architecture, elucidating the interconnections and flows between the four primary 
components, is visually represented in Figure 1, while the comprehensive algorithm is 
elaborated in Algorithm 1 and Algorithm 2. They provide a comprehensive overview 
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of the proposed methodology and its constituent parts, facilitating a deeper under-
standing of the architecture’s operational mechanics and the interplay between its 
various elements.
Semi-supervised learning scenarios involve labelled and unlabelled datasets contami-
nated by random transient noise interference. These datasets are denoted as 
fx$imp;label%

i gN
i!1 and fx$imp;unlabel%

i gM
i!1 respectively, where xi represents an individual sam-

ple in the dataset, characterised by a length of L, the value of each data point is denoted as 
R, such that xijR1&L. The variables N and M represent the cardinality of the labelled and 
unlabelled datasets, respectively. Furthermore, the ratio N=$N #M% represents the 
proportion of labelled data to the total data, referred to as the labelling rate, denoted 
by E. This parameter E serves as a critical hyper-parameter, where a higher value of E 
indicates an enhanced capacity of the model to extract meaningful features from the data.

The methodology begins with a crucial pre-processing step, wherein transient noise 
interference is systematically removed from both the labelled datasets fx$imp;label%

i gN
i!1 and 

the unlabelled datasetsfx$imp;unlabel%
i gM

i!1. This noise removal process is essential for 
improving the signal-to-noise ratio and enhancing the quality of the input data, thereby 
facilitating more accurate subsequent analyses. Following this pre-processing, these 
refined datasets are denoted as fx$free’imp;label%

i gN
i!1 and fx$free’imp;unlabel%

i gM
i!1, respectively.

Subsequently, the dataset fx$free’imp;label%
i gN

i!1 is employed to train a teacher model 
using supervised learning techniques. The trained teacher model, leveraging its knowl-
edge acquired from the labelled data, is then utilised to classify the dataset 
fx$free’imp;unlabel%

i gM
i!1. This classification process generates confidence scores, denoted 

by oc, and pseudo labels, denoted by flpsue
j gM

j!1, for each sample in the unlabelled dataset.
The next phase involves a critical matching process, wherein the confidence scores oc, 

pseudo labels flpsue
j gM

j!1, and the original noise-contaminated unlabelled dataset 
fx$imp;unlabel%

i gM
i!1 are combined to create a new dataset fx$imp;unlabel%

i gQ
i!1. This matching 

process is crucial for leveraging information from both labelled and unlabelled data, 
thereby enhancing the overall learning process. The matching algorithm employs 
a threshold-based approach to select high-confidence pseudo-labelled samples, ensuring 
that only the most reliable predictions from the teacher model are incorporated into the 
student model’s training data.

Figure 1. The proposed SSTL preserving spatial homogeneity.
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In the final stage, a student model is trained using both the original labelled 
dataset fx$imp;label%

i gN
i!1 and the newly obtained dataset fx$imp;unlabel%

i gQ
i!1. This 

approach allows the student model to benefit from the knowledge distilled by the 
teacher model, as well as the additional information provided by the pseudo- 
labelled data. The student model’s training process incorporates a carefully designed 
loss function that balances the contributions of labelled and pseudo-labelled sam-
ples, ensuring optimal learning from both sources.

3.1. Teacher model

To identify and characterise transient interference in the datasets fx$imp;label%
i gN

i!1 and 
fx$imp;unlabel%

i gM
i!1, a first-order Markov model [4] is employed for signal analysis. This 

approach begins by discretising the continuous signal xijR1&L into a finite number of 
states. For each value R in the signal, the corresponding interval number j is determined, 
which is then treated as the state Si of the signal at that particular moment. This process 
effectively transforms each continuous state into an independent state sequence, as 
defined by the following equation: 

where k 2 $1; L%. nbin represents a predefined number of states. It is important to note 
that the size of nbin directly affects the discrete state density, thus influencing the 
granularity of the analysis. After partitioning xi into nbin states, each state Sj is defined 
by the following formula. 

where 3 represents the equidistant length of the partition, ensuring uniform state 
intervals. Subsequently, based on the state sequence Si, a statistical analysis is performed 
to determine the frequency of state transitions. This analysis is used to construct 
a Markov transition matrix, MTMij, which is mathematically expressed as: 

where g$x; y% denotes the Kronecker Delta function, which equals 1 when x ! y and 0 
otherwise. To derive meaningful transition probabilities, MTMij is normalised by rows, 
resulting in the Markov transition probability matrix, MTPN . This matrix represents the 
probability of each state i transitioning to state j: 

The element MTPM$i; j% represents the likelihood of the system transitioning from the 
current state to another state. Under normal conditions, the signal’s state transitions 
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should exhibit smooth and coherent characteristics, with the discretised signal highly 
concentrated around the predefined discrete intervals. However, in the presence of 
transient interference, the signal’s state transitions may experience abrupt changes. 
Therefore, MTPM$i; j% serves as a powerful tool for localising transient interference within 
the signal.

To identify areas of extreme transition, a threshold tp is established for Pij. This 
threshold is a critical hyperparameter in the analysis. When Pij exceeds this threshold, 
the corresponding region is classified as an area of extreme transition, indicating the 
presence of transient interference. The datasets fx$imp;label%

i gN
i!1, fx$imp;unlabel%

i gM
i!1, and the 

transition probability matrix MTPM$i; j% are then input into a supporting extraneous 
transient noise module. This module is designed to eliminate transient interference 
using a set-to-zero processing method, defined as: 

This process yields a labelled dataset fx$free’imp;label%
i gN

i!1 and an unlabelled dataset 
fx$free’imp;unlabel%

i gM
i!1, both free from transient interference.

Following the noise removal process, a backbone Encoder block E$(% is employed to 
extract high-level semantic features zi ! E$xi% from each sample. These features are then 
input into a classification header C$(%, which outputs a probability distribution vector 
pi ! C$zi% representing the predicted health status. The model’s performance is evalu-
ated using cross-entropy loss Ls, calculated based on the prediction results pi and the true 
labels fllabel

j gN
j!1: 

This loss function is used to train the teacher model, after which the model parameters 
are locked to preserve the learned knowledge.

3.2. Construct pseudo labels

In the second stage of the process, the set of unlabelled, interference-free samples, 
denoted as fx$free’imp;unlabel%

i gM
i!1, undergoes classification using the pre-trained teacher 

model. Subsequently, the resulting output is processed through a SoftMax function, 
which can be mathematically expressed as follows: 

The SoftMax function serves a crucial role in this context, as it normalises the 
elements of an input vector to values between 0 and 1, while ensuring that the sum 
of all elements equals 1. This normalisation property is particularly useful for 
probabilistic interpretations. The output of the SoftMax function is defined as the 
confidence score oc, which represents the probability that a given sample belongs to 
a specific category. It is important to note that the threshold o for oc is a hyper- 
parameter that requires careful tuning. In the proposed methodology, pseudo labels 

10 C. XU ET AL.



flpsue
j gM

j!1 with confidence scores oc ) 0:9 are considered to be reliable and are 
treated as true labels. This threshold selection is critical for maintaining the quality 
of the pseudo-labelling process. When the model’s predicted probability for a given 
sample reaches or exceeds 0.9, the softmax output exhibits a pronounced peak, 
indicating a high degree of certainty in the classification. According to the 
Maximum A Posteriori (MAP) estimation principle in probability theory, such 
high-confidence predictions are more likely to correspond to the true class label, 
as the posterior probability of the predicted category substantially exceeds that of 
alternative categories. Under these conditions, the assignment of pseudo-labels can 
be performed with a relatively low error rate, thereby enhancing the reliability of 
semi-supervised learning. An essential observation is that fx$free’imp;unlabel%

i gM
i!1 is 

derived from fx$imp;unlabel%
i gM

i!1 after the removal of interference noise. 
Consequently, the labels for these two sets of data should be identical, both 
represented by flpsue

j gM
j!1. This consistency in labelling is crucial for maintaining 

the integrity of the dataset throughout the noise removal process.
The third stage of the procedure involves pairing the corresponding confidence scores 

oc, pseudo labels flpsue
j g

M
j!1, and the original unlabelled samples with interference 

fx$imp;unlabel%
i gM

i!1. Subsequently, pairs where the confidence score falls below the threshold 
(i.e. oc < o) are eliminated from the dataset. This filtering process results in the creation 
of new, refined datasets: fx$imp;unlabel%

i gQ
i!1 and its corresponding set of pseudo-labels 

flpsue0
j gQ

j!1. These refined datasets are expected to contain more reliable samples and 
labels, which can potentially improve the performance of subsequent machine learning 
tasks.

3.3. Normalisation with amplitude-limiting

In the fourth stage of the process, both the labelled samples with interference 
fx$imp;label%

i gN
i!1 and the unlabelled samples with interference fx$imp;unlabel%

i gQ
i!1 

undergo amplitude-limited normalisation, constraining their values to the range 
of 0 to 1. This normalisation step is crucial for ensuring consistency in the data 
representation and facilitating subsequent analysis. Figure 2 provides 
a comprehensive visual representation of the various stages of signal processing. 
Specifically, Figure 2(a) illustrates the original signal samples containing transient 
interference, while Figure 2(b) depicts the corresponding samples after the 
removal of transient interference. A comparative analysis of these figures reveals 
the significant impact of transient interference on the signal amplitude. Notably, 
samples with transient interference obscure the underlying vibration data fluctua-
tions, whereas the removal of such interference unveils the intrinsic amplitude 
variations of the vibration signal. Figure 2(c,d) demonstrates the outcomes of 
conventional signal normalisation techniques. Although this approach confines 
the data within the (0,1) range, it fails to adequately mitigate the effects of 
transient interference. In cases where the amplitude of transient interference is 
substantial, traditional normalisation may compress the vibration characteristics to 
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approximately 0.42, severely impeding the model’s ability to extract meaningful 
gear vibration features.

To address these limitations, a new Amplitude-limited Normalisation (ALN) method 
is proposed. This approach constrains the vibration signal amplitude within a predefined 
range of maximum ALT and minimum ’ALT, where Amplitude-limited Threshold 
(ALT) is a carefully selected hyper-parameter. The selection of the ALT must be carefully 
tailored to the characteristics of each dataset in order to optimise model accuracy and 
enhance training efficiency. The mathematical formulation of this technique is expressed 
as follows: 

where j 2 f1; lg, l is defined as the sample length.
The amplitude normalisation ensures that vibration signals of the same category 

exhibit features of comparable scale post-normalisation. As illustrated in Figure 2 
(e) and Figure 2(f), this method effectively constrains transient interference within 
the (’ALT, ALT) range while preserving the characteristics of the vibration signal 
in regions unaffected by interference. It is important to note that the amplitude of 
xi may not always reach ALT. In the traditional normalisation procedure for 
processing vibration signals subjected to random transient noise, there is 
a corresponding variation in amplitude scale. Consequently, signals of the same 
type may exhibit diverse amplitude scales, potentially leading to inaccuracies in 
feature extraction and obscuring the identification of useful or latent features. To 
address this issue, the amplitude of the vibration signal is constrained prior to 
normalisation, specifically setting xi 0* + ! ALT and xi 1* + ! ’ALT in Equation 8.

Figure 2. (a) Original sample containing transient interference; (b) processed sample after removal of 
transient interference from (a); (c) samples produced via the application of traditional normalisation to 
the raw signal (a), with amplitude constrained to the [0, 1] range; (d) samples generated through 
traditional normalisation applied to signal (b), confined to the [0, 1] amplitude range; (e) samples 
generated through amplitude-limited normalisation of signal (a); and (f) samples produced by 
amplitude-limited normalisation of signal (b).
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This modification ensures that signals with exceptionally small vibration amplitudes 
maintain consistent feature scales after normalisation. The selection of an appropriate 
ALT value is critical and requires empirical testing, as different datasets may necessitate 
different ALT values. Setting ALT too high may fail to adequately limit the impact of 
amplitude on normalisation, while setting it too low risks losing essential characteristics 
of the vibration signal. Figure 2 provides a comprehensive visual comparison of the 
various signal processing stages. It is crucial to emphasise that amplitude-limited normal-
isation is not applied prior to training the teacher model. This decision is based on the 
fact that the teacher model is trained using data without transient interference, and 
amplitude-limited normalisation, while not eliminating transient interference, may result 
in the loss of significant vibration features.

3.4. Student model

In the final stage of this process, the encoder function E$(% is employed to extract 
high-dimensional features from the normalised input xnor

i . Xnor
i represents the 

output of the amplitude-limited normalisation process applied to 
bothfx$imp;unlabel%

i gQ
i!1 and fx$imp;label%

i gN
i!1. This step is crucial for capturing the 

intricate characteristics of the vibration signals, which are inherently complex in 
nature. It is important to note that transient interference in vibration signals is 
typically localised, affecting only a small portion of the time series rather than 
permeating the entire signal. Consequently, the data characteristics of 
fx$imp;unlabel%

i gQ
i!1 and fx$imp;label%

i gN
i!1 remain consistent in regions unaffected by 

transient interference. This property allows for the inclusion offx$imp;label%
i gN

i!1 in 
the training set of the student model, even after amplitude-limited normalisation 
has been applied.

The encoder’s output, denoted as zstudent
i ! E$xnor

i %, is subsequently processed through 
a fully connected layer to produce the distribution vector pstudent

i ! C$zstudent
i %. The cross- 

entropy loss is then calculated using the following equation: 

This loss function is used to perform gradient updates on the model weights, thereby 
training the student model. It is worth noting that llabel0

i is composed of fllabel
j gN

j!1 and 
flpsue0

j gQ
j!1, encompassing both the original labels and the refined pseudo labels.

4. Experimental validation and comparative analysis

4.1. Case study I

4.1.1. Specifications for data description and test-rig
The gearbox dataset, meticulously collected from a sophisticated gear transmission 
system, provides a comprehensive representation of various operational conditions and 
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fault types. This system, as illustrated in Figure 3, comprises several principal compo-
nents, including a tachometer, driven motor, torque transducer, two-stage parallel gear-
box system, load gearboxes, and load motor. The placement of the accelerometer is 
especially noteworthy, as it is affixed to a separate disk. For a closer examination, 
a detailed view of this configuration is provided in the zoomed section of Figure 3. To 
ensure a high-fidelity representation of the system’s dynamics, the dataset is sampled at 
a frequency of 12.8 kHz. Furthermore, it encompasses a range of operational conditions, 
with rotational speeds systematically varied from 1600 to 2400 r/min. In addition to 
normal operating conditions, the dataset incorporates five common gear fault types, 
illustrated in Figure 4, namely: miss (missing tooth), chip (cracked teeth), root (crack at 
tooth root), surface (wear on gear surface), and eccentric (misaligned geometric and 
rotational centres). The gear meshing configuration is depicted in Figure 5(a), while 
Figure 5(b) illustrates the internal configuration of the parallel gearbox system. In the 
latter, the faulty gear is clearly demarcated with a dotted box for ease of identification.

To facilitate in-depth gear diagnosis analysis, vibration data is collected along the 
x-axis of the accelerometer while the gear rotates at a constant speed of 1600 rpm. Each 
category, including the healthy condition, comprises 768,000 data points gathered over 

Algorithm 1 Training teacher model

Algorithm 2 Training student model
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a 60-second duration. This extensive dataset provides a robust foundation for the 
development and validation of fault diagnostic algorithms, enabling researchers to 
explore a wide range of operational conditions and fault types within a controlled 
experimental setting.

Figure 3. Experimental test-rig of gear transmission system.

(a) (b) (c) 

(d) (e) 

Figure 4. (a) Miss (missing tooth), (b) chipped (cracked teeth), (c) surface (wear on gear surface), (d) 
root (crack at tooth root), (e) eccentric (misaligned geometric and rotational centres).

NONDESTRUCTIVE TESTING AND EVALUATION 15



4.1.2. Comparative networks and results analysis
The primary objective of this research is to examine and analyse the performance 
variations exhibited by gearboxes when subjected to transient noise disturbances 
across a diverse range of environmental conditions and fault scenarios. In order to 
conduct this research with rigorous methodology, external impacts such as transient 
noise are carefully measured and systematically combined with the gearbox vibrations 
during the data collection process, thereby obtaining a realistic representation of 
transient noise disturbances. To ensure the integrity of the testing procedure and 
mitigate potential bias, the dataset is initially partitioned into two distinct subsets: 
a training set comprising 80% of the data, and a test set encompassing the remaining 
20%. Subsequently, with the aim of simulating real-world scenarios of label scarcity, 
the number of labelled samples is carefully determined based on the parameter E, 
which is previously introduced in section 3.2 For any given set of N samples 
representing an identical state, only a fraction (E& N) of these samples retain their 
original labels, while the labels for the remaining samples are systematically removed. 
This approach allows for a controlled simulation of varying degrees of label avail-
ability. To comprehensively assess the model’s performance under different levels of 
label scarcity, the dataset is evaluated using three distinct label rates: 5%, 10%, 
and 15%.

To assess the superiority of the proposed method, it is rigorously compared with state- 
of-the-art (SOTA) techniques, which include three supervised learning methods and 
three semi-supervised learning methods. These methods include: DenseNet (Impulse 
noise), a supervised approach that exclusively utilises fx$imp;label%

i gN
i!1 to train the Encoder 

block and classification head; DenseNet (Denoise), another supervised approach that 
trains the Encoder block and classification heads using only fx$free’imp;label%

i gN
i!1; and 

DenseNet (Amplitude limited), which trains the Encoder block and classification heads 
using Amplitude-limited fx$imp;label%

i gN
i!1. Additionally, the comparison encompasses 

SimCLR [42], a contrastive learning method that employs additional negative samples 
and a projection layer for training; Fast-MoCo [43], an advanced contrastive learning 
method that increases the number of negative pairs using momentum encoders and 

Figure 5. (a) Gear meshing, (b) Internal configuration of parallel gearbox system.
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a memory bank and is jointly trained with supervised learning; and ITSSL [44], a semi- 
supervised method that utilises time-amplitude data augmentation techniques for train-
ing. This comprehensive comparison allows for a thorough evaluation of the proposed 
method’s effectiveness across various learning paradigms and techniques.

The successful training of a deep learning model is largely contingent upon the 
selection of appropriate hyper-parameters. To validate the generality of the proposed 
semi-supervised transfer (SSTL) framework, both teacher and student models employed 
the widely adopted DenseNet121 architecture. DenseNet121 features a densely connected 
structure that facilitates efficient extraction of sample features and has demonstrated 
excellent performance across a variety of models. Initially, the learning rate is set to 
0:0001, with the customary practice of commencing training gradually and making 
adjustments as the process unfolds. Subsequently, the learning rate for each epoch is 
halved, a strategy aimed at efficiently converging the model. The optimiser employed in 
this architecture is Adam, a popular optimisation algorithm renowned for its adaptive 
learning rate adjustments across different parameters. Adam ingeniously combines the 
principles of RMSprop and momentum optimisation, rendering it suitable for a diverse 
array of deep learning tasks. The loss function designated for the training procedure is 
CrossEntropyLoss, which is commonly utilised for classification problems to minimise 
the discrepancy between predicted and actual class labels. This function measures the 
differences between probability distributions, making it an apt choice for training 
classification models. Furthermore, the framework incorporates the Gaussian Error 
Linear Unit (GELU) activation function. GELU is a non-linear activation function that 
has garnered attention in recent years due to its capacity to enhance the performance of 
deep neural networks. To mitigate overfitting and improve generalisation, a dropout rate 
of 0:1 is applied. Dropout is a regularisation technique that randomly sets a small fraction 
of input units to zero during training, thereby preventing the model from over-relying on 
specific features and enhancing its ability to generalise to unseen data. Lastly, the training 
process is conducted over 50 epochs. An epoch refers to a complete pass through the 
entire training dataset, and training over multiple epochs allows the model to iteratively 
update its parameters and learn more thoroughly from the data. The highest test 
accuracies achieved across all datasets are presented in Table 1, providing 
a comprehensive overview of the model’s performance under various conditions and 
configurations.

The comparative results, indicated by accuracies across all datasets as presented in 
Table 1, reveal several significant insights into the performance of various learning 
methods. A notable inverse relationship between label rate and model performance is 
observed, with all methods experiencing a precipitous decline in accuracy as the label rate 
decreases, thus highlighting the detrimental impact of label scarcity. Among the evalu-
ated methods, SSTL consistently demonstrates superior performance, achieving the 
highest accuracy across various label rates and showcasing its robustness in diverse 
data scenarios. When comparing semi-supervised learning approaches with amplitude- 
limited normalisation and supervised learning, the latter two exhibit lower training 
accuracy, suggesting that amplitude-limited normalisation may excessively attenuate 
time-related features in supervised learning contexts. Conversely, semi-supervised train-
ing, while capable of extracting sufficient time features, is more susceptible to noise 
interference. Interestingly, within the semi-supervised learning paradigm, amplitude- 
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limited normalisation strikes a balance by sacrificing some time characteristics without 
compromising model accuracy, while effectively mitigating the impact of transient noise. 
Furthermore, semi-supervised learning methods consistently outperform their super-
vised counterparts, with ITSSL achieving commendable accuracy but still falling short of 
SSTL’s performance. This discrepancy can be attributed to ITSSL’s inability to completely 
eliminate transient noise and its vulnerability to challenging samples, whereas the 
proposed method incorporates a confidence-based sample selection mechanism, result-
ing in a more stable model fitting process characterised by faster convergence and higher 
accuracy.

For further comparative analysis, a 15% labelling rate is employed in Case Study I for 
experimental validation, with results depicted in Figure 6. The proposed SSTL demon-
strated a remarkable improvement in diagnostic accuracy by 3%. While the supervised 
learning method such as Densenet (Denoise) achieved an accuracy of 90:5%, and the 
semi-supervised learning method reached 97:4%, SSTL attained an impressive 98:5%. 
These results emphatically underscore SSTL’s superiority over both supervised and other 
semi-supervised methods, demonstrating the efficacy of the proposed SSTL in capturing 
underlying features of unlabelled signals and consequently enhancing diagnostic perfor-
mance in scenarios with limited labelled data. Furthermore, Figure 6 illustrates accuracy 
fluctuations of SSTL and other comparative methods in the SSL with a 5% labelled rate. 
In this most challenging semi-supervised learning scenario, SSTL achieves remarkable 
performance, attaining an average accuracy of 95:3%. Compared to traditional super-
vised learning methods, SSTL’s performance improves by 66:5%, 21:8%, and 63%, 
respectively. In relation to other semi-supervised learning methods, SSTL’s performance 
increases by 12%, 10:7%, and 8:2%, respectively. Moreover, SSTL exhibits stable perfor-
mance across experiments, with accuracy consistently ranging from 93% to 97%, sig-
nificantly surpassing results obtained from most supervised and semi-supervised 
learning methods. These experimental results provide compelling evidence that the 
proposed framework not only outperforms traditional supervised learning methods 
and other semi-supervised approaches but also effectively leverages underlying features 
from unlabelled data. Consequently, it significantly enhances diagnostic performance in 
scenarios characterised by data scarcity, thus addressing a critical challenge in machine 
learning applications.

4.1.3. Comparison of ablation experimental results
(a) Influence of Aptitude Limiting Threshold (ALT)

Table 1. Comparative analysis of experimental results for case study I.
Accuracy(%) 
Model 

Label rate
5% 10% 15%

DenseNet (Impulse noise) [45] 28.8,0.18 48.7,0.03 68.3,0.08
DenseNet (Denoise) 73.5,0.5 85.5,0.11 90.5,0.15
DenseNet (Amplitude-limited) 32.3,0.96 54.6,0.06 75.4,0.07
SimCLR [42] 83.3,0.35 88.6,0.5 97.1,0.35
Fast-MoCo [43] 84.6,0.31 91.5,0.16 97.4,0.49
ITSSL [44] 87.1,0.37 93.4,0.39 95.5,0.57
SSTL (Ours) 95.3,0.24 97.5,0.34 98.5,0.15
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In order to comprehensively investigate the impact of the Amplitude Limiting 
Threshold (ALT), a crucial hyper-parameter that influences the amplitude scale of 
vibration signals, a meticulous ablation study is conducted. Figure 7 presents a detailed 
illustration of the test accuracy results obtained from various ALT configurations of the 
SSTL model at a 5% labelled rate. Moreover, to facilitate a more in-depth analysis of the 
model’s performance stability, a comparative analysis of the accuracy convergence is 
provided in the highlighted and zoomed region in Figure 7. The results of this study 
consistently demonstrate that SSTL implementations incorporating the amplitude- 
limited normalisation strategy exhibit significantly superior performance compared to 
their counterparts that do not employ this strategy. This observation strongly suggests 
that the amplitude-limited normalisation strategy effectively mitigates the detrimental 
impact of transient interference on vibration signals, thereby enhancing the overall 
performance of the model.

Furthermore, a notable trend emerges as the ALT value decreases: the test accuracy 
gradually improves, and concurrently, the range of fluctuation in test accuracy becomes 
markedly smaller. This inverse relationship between ALT and performance metrics 
indicates that the reduction of ALT serves a dual purpose. Firstly, it amplifies the 
amplitude features of vibration signals, making them more pronounced and discernible. 
Secondly, it constrains these features to a uniform amplitude scale, which, in turn, 
substantially enhances the SSTL model’s feature extraction capabilities.

(b) Influence of o
To evaluate the impact of the hyper-parameter o on the proposed SSTL model, a series 

of ablation experiments are conducted. These experiments are designed to systematically 
investigate the degree of influence that o exerts on the model’s performance. Specifically, 

Figure 6. Experimental results for various methods applied to case study I with 5% of the data 
labelled.

Figure 7. Impact of amplitude-limited.
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a range of o values are tested to quantitatively assess their impact on SSTL’s efficacy and 
stability. Figure 8 presents the test accuracy of SSTL for various values at a 5% label rate. 
Additionally, a zoomed region in Figure 8 is provided to offer a more detailed view of the 
model’s performance during the crucial accuracy convergence stages of training.

The experimental results reveal a notable correlation between the magnitude of o and 
the model’s performance. When o is assigned a relatively small value, the test accuracy of 
SSTL exhibits significant fluctuations, indicating a lack of stability in the learning process. 
This instability can be attributed to the low credibility of pseudo labels generated when o 
is small, which consequently results in a higher proportion of samples that deviate from 
the true labels. As a result, this phenomenon increases the complexity and difficulty of 
SSTL training. Conversely, as o increases, the test accuracy of SSTL demonstrates 
markedly reduced fluctuations, ultimately approaching a consistent level of nearly 
95%. This observation suggests that a larger o value is effective in extracting high- 
quality samples from the dataset. Furthermore, it mitigates the challenges associated 
with insufficient labelled data, thereby supporting more robust and effective SSTL 
training. In conclusion, these findings underscore the critical role of o in optimising 
SSTL performance.

4.1.4. Comparative analysis of visualisations
To conduct a more rigorous quantitative analysis of the diagnostic results, a Confusion 
Matrix (CM) is employed in this case study. The results for a 5% labelled rate are 
illustrated in Figure 9, thereby providing a visual representation of the model’s perfor-
mance across various fault types. Upon careful examination of the data, it becomes 
evident that the proposed SSTL method, as depicted in Figure 9(g), successfully identifies 
all fault types with remarkably high accuracy. Notably, it achieves 100% accuracy for 
Chipped faults and impressive 98:8% for Eccentric faults, thus demonstrating its superior 
diagnostic capabilities. In contrast, the supervised models, specifically DenseNet 
(Impulse noise) illustrated in Figure 9(a) and DenseNet (Denoise) shown in 
Figure 9(c), exhibit significant limitations in their ability to accurately identify gear 
faults. While DenseNet (Denoise) demonstrates a rudimentary capacity to differentiate 
between gear faults, it only achieves precise diagnosis for chipped and surface faults, 
thereby highlighting its restricted applicability in comprehensive fault detection 
scenarios.

Furthermore, the semi-supervised models, including SimCLR (Figure 9(d)), Fast- 
MoCo (Figure 9(e)), and ITSSL (Figure 9(f)), display improved fault detection 

Figure 8. Impact of β.
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capabilities when compared to their supervised counterparts. However, it is important to 
note that their average accuracy remains below 87:1%, indicating room for improvement 
in their diagnostic precision. In stark contrast to these aforementioned models, the SSTL 
method demonstrates exceptional performance across the board. It accurately diagnoses 
all six fault types with an impressive average accuracy of 95:3%, and notably achieves 
over 95% accuracy for five of the fault types. This remarkable performance underscores 
the robustness of the SSTL framework against transient interference and its effectiveness 
in fault diagnosis tasks, particularly in scenarios where the availability of training data is 
limited.

In order to conduct a comprehensive comparative analysis of the captured features 
across various models, this study employs the t-distributed Stochastic Neighbor 
Embedding (t-SNE) dimensionality reduction technique. This advanced visualisation 
method allows for a more intuitive understanding of the high-dimensional feature 
spaces. The comparative results of this analysis are presented in Figure 10. The visualisa-
tion results for the typical models, including DenseNet (Impulse noise), DenseNet 
(Denoised), and DenseNet (Amplitude-limited), are illustrated in Figure 10(a-c). These 
visualisations reveal that the scatter points representing different damage categories are 
largely clustered together, with minimal separation between classes. This clustering 
suggests that these models struggle to effectively differentiate between various failure 
types, indicating a limited capacity for fault identification. In contrast, the models 
employing semi-supervised learning approaches, namely SimCLR, Fast-MoCo, and 
ITSSL, demonstrate an enhanced ability to distinguish between different gear failures, 
as evidenced in Figure 10(d-f). This improvement can be attributed to the additional 
information leveraged through the semi-supervised learning paradigm. Specifically, the 
Fast-MoCo model, as depicted in Figure 10(e), exhibits a notable capability to identify 
chipped and eccentric gear failures. This is evident from the well-clustered feature 

Figure 9. Classification performance via confusion matrix: (a) DenseNet (Impulse noise), (b) DenseNet 
(denoised), (c) DenseNet (amplitude-limited), (d) SimCLR, (e) Fast-MoCo, (f) ITSSL, (g) SSTL (Ours).
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manifolds corresponding to these failure types. However, it is important to note that the 
model still faces challenges in differentiating between root, surface, and missing tooth 
failures, as indicated by the overlapping feature manifolds for these categories. The 
proposed SSTL method, illustrated in Figure 10(g), demonstrates superior performance 
in feature discrimination. The feature manifold distributions for almost all failure types 
are clearly distinguishable, with scatter points that are either well-clustered or distinctly 
separable. This visual evidence strongly suggests that the SSTL model possesses 
a remarkable ability to accurately capture and discriminate the latent characteristics 
associated with different failure scenarios.

4.2. Case study II

4.2.1. Specifications for data description and test-rig
In order to further validate and rigorously test the proposed method, an experimental 
apparatus known as the Drivetrain Prognostics Simulator (DPS), as illustrated in 
Figure 11, is employed for case study II. This test-rig, manufactured by SpectraQuest 
Inc., is specifically chosen for its ability to provide complex drivetrain dynamics under 
controlled conditions. The DPS comprises several intricately interconnected compo-
nents, each of which plays a crucial role in the overall system functionality. These 
components include: a variable speed drive motor, which provides the primary motive 
force; a planetary gearbox system, which offers a compact and efficient means of power 
transmission; a two-stage parallel gearbox system, which allows for further speed and 
torque modifications; resistance-load gear boxes coupled with a resistance-load inducing 
electric load motor, which simulate various operational loads; and an electric control unit 
that orchestrates and manages the entire configuration. In this experimental protocol, the 
signal sampled from the planetary gearbox transmission system is selected for analysis. 
This choice is motivated by the complex dynamics exhibited by planetary gearboxes and 
their widespread use in various industrial settings. The data acquisition process is care-
fully designed to ensure high-quality, high-resolution data collection. Specifically, the 
horizontal position signal is captured at a sampling frequency of 30,720 Hz, which 

Figure 10. Feature visualisation using t-SNE: (a) DenseNet (Impulse noise), (b) DenseNet (denoised), (c) 
DenseNet (amplitude-limited), (d) SimCLR, (e) Fast-MoCo, (f) ITSSL, (g) SSTL (Ours).
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provides a detailed temporal resolution for subsequent analysis and allows for the capture 
of high-frequency components that may be critical for fault detection and diagnosis.

Each data category in the experimental dataset encompasses 196,608 data points, 
collected over a period of 6.4 seconds. This substantial dataset size ensures statistical 
robustness and allows for the application of advanced signal processing and machine 
learning techniques. Moreover, the 6.4-second duration for each data category strikes 
a balance between capturing sufficient system dynamics and maintaining computational 
feasibility in subsequent analyses. This comprehensive experimental setup and data 
collection protocol are designed to rigorously test the proposed method under conditions 
that closely simulate real-world industrial drivetrain operations. By doing so, the study 
aims to enhance the practical applicability and validity of the research findings, ulti-
mately contributing to the advancement of prognostics and health management in 
industrial systems.

4.2.2. Comparative networks and results analysis
To further explore the effectiveness of the proposed SSTL method, as previously 
discussed in case study I, this section compares it with various established techni-
ques, including DenseNet (Impulse noise), DenseNet (Denoise), DenseNet 
(Amplitude-limited), SimCLR, Fast-MoCo, and ITSSL. The diagnostic results 
obtained from the DPS datasets are detailed in Table 2 and visually represented 
in Figure 12. Figure 12 illustrates the experimental results of various methods 
applied to the DPS dataset, using 10% labelled data. In this study, the proposed 
SSTL approach is compared with established supervised learning models, including 
DenseNet (Impulse noise), DenseNet (Denoise), and DenseNet (Amplitude-limited). 
The results indicate that SSTL significantly enhances performance relative to these 
models. Specifically, with a labelling rate of 10%, SSTL achieves an accuracy of 
91:2%, substantially outperforming the supervised learning models DenseNet 
(Impulse noise), DenseNet (Denoise), and DenseNet (Amplitude-limited), which 

Figure 11. Illustration of the drivetrain prognostics simulation (DPS).
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recorded accuracies of 84:5%, 83:3%, and 21:4%, respectively. Furthermore, when 
the labelling rate is increased to 20%, SSTL demonstrates even more impressive 
results, attaining a diagnostic accuracy of 93:1%. In contrast, the accuracy of the 
supervised methods remains below 88%, despite the increase in labelled data. This 
observation highlights the robustness and scalability of the SSTL method across 
different labelling rates.

In addition, this study conducts a rigorous comparison between the proposed Self- 
Supervised Transfer Learning (SSTL) methods and several well-established semi- 
supervised learning approaches, including SimCLR, Fast-MoCo, and ITSSL. The results 
consistently demonstrate the superiority of the SSTL models. Notably, when operating 
under a constrained labelled data scenario with only 10% of the dataset labelled, the SSTL 
approach achieves a remarkable accuracy of 91:2%. This performance significantly 
surpasses that of its counterparts, with SimCLR attaining 87:6%, Fast-MoCo reaching 
82:1%, and ITSSL achieving 84:9%. These findings not only highlight the efficacy of SSTL 
but also provide robust and compelling evidence that the incorporation of SSTL net-
works can markedly enhance the accuracy of fault diagnosis systems.

4.2.3. Comparative analysis of visualisations
In this case study, a confusion matrix is employed for the quantitative analysis of 
diagnosis results, as illustrated in Figure 13. The results demonstrate that the 
proposed Self-Supervised Transfer Learning (SSTL) method exhibits remarkable 
efficacy in identifying all fault types with high precision, even when trained on 
a dataset with a mere 10% labelled rate. This performance is especially remarkable 
when compared to traditional supervised models like DenseNet variants (which 
are fine-tuned for impulse noise, denoising, and amplitude-limited scenarios), as 

Table 2. Comparative analysis of experimental results for case study II.
Accuracy(%)  

Model 

Label rate

10% 15% 20%

DenseNet (Impulse noise) 84.5,0.21 85,0.17 88,0.36
DenseNet (Denoise) 83.3,0.19 85.5,0.19 86.8,0.18
DenseNet (Amplitude-limited) 21.4,0.2 48.7,0.16 52,0.22
SimCLR 87.6,0.61 88.2,0.46 88.7,0.89
Fast-MoCo 82.1,3.94 87.4,3.49 88,3.39
ITSSL 84.9,0.2 89.7,0.4 90.7,0.4
SSTL (Ours) 91.2,0.53 93,0.61 93.1,0.65

Figure 12. Experimental results of diJerent methods on UESTC dataset with 10% labelled data.
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they are limited to detecting only one type of fault at a time. Moreover, although 
semi-supervised models like SimCLR, Fast-MoCo, and ITSSL are capable of gen-
erally detecting all types of gear failures, their accuracy in distinguishing specific 
fault categories is still not ideal. In contrast, the SSTL method showcases excep-
tional performance, not only accurately identifying all five types of faults but also 
achieving an impressive average accuracy of 91:2%. These compelling results 
highlight the strong effectiveness of the SSTL framework in fault diagnosis, 
especially in difficult situations where training data is scarce and transient inter-
ference is present.

The T-SNE results presented in Figure 14 provide further evidence of SSTL’s 
notable advantages in differentiating between various fault signal types. 
Specifically, when constrained to a 10% labelled rate for training, traditional 
supervised learning approaches exhibit marked difficulties in distinguishing 
between different fault signals. Although semi-supervised models show marginal 
improvements in this regard, their overall performance remains limited. In con-
trast, SSTL demonstrates a robust and superior ability to differentiate between 
nearly all fault types, with only minimal confusion observed between the Crack 
and Normal fault categories. These visualisation results provide strong corrobora-
tive evidence supporting the conclusion that the SSTL framework not only effec-
tively extracts salient features from vibration signals under conditions of transient 
interference but also successfully separates signal features of different fault types 
within the high-dimensional feature space.

Figure 13. The classifying performance through confusion matrix. (a) DenseNet(ImpulseNet(Impulse 
noise). (b) DenseNet(Denoise).Net(Denoise). (c) DenseNetNet (amplitude-limited). (d) SimCLR.CLR. (e) 
Fast-MoCo. (f) ITSSL. (g) SSTL(Ours).
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5. Conclusion

In conclusion, this research presents a novel SSTL approach that significantly enhances 
the accuracy and reliability of fault diagnosis in planetary gearboxes, particularly in 
challenging environments with limited labelled data and transient interference. By 
integrating semi-supervised learning with transfer learning and introducing innovative 
strategies such as label migration and matching, along with a limiting normalisation 
technique, SSTL addresses key limitations of traditional fault diagnosis methods. The 
results from two case studies confirm the effectiveness of the proposed approach, 
demonstrating its clear advantages over existing methods in terms of both fault detection 
accuracy and robustness.

Future work could build upon the findings of this study by exploring the application of 
the SSTL approach to other types of rotating machinery beyond planetary gearboxes. 
Additionally, further investigation into the scalability of SSTL in real-time applications 
with varying levels of transient interference and unlabelled data is warranted. Developing 
more advanced techniques for pseudo-labelling and domain adaptation could also 
improve SSTL’s performance in even more complex and dynamic environments, poten-
tially leading to broader industrial adoption of this approach.
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