NONDESTRUCTIVE TESTING AND EVALUATION Ialy I&(zr &GFranC'S
https://doi.org/10.1080/10589759.2025.2544893 aylor & Frandis broup
W) Check for updates

Semi-supervised transfer learning preserving spatial
homogeneity for gearbox diagnostics in extraneous transient
noise

Chaojun Xu®?, Peng Chen?<, Jia Gao?, Yagiang Jin®® and Meng Rao*

2College of Engineering, Shantou University, Shantou, Guangdong, P.R. China; School of Qilu
Transportation, Shandong University, Jinan, Shandong, P.R. China; Key Laboratory of Intelligent
Manufacturing Technology, Ministry of Education, Shantou, Guangdong, P.R. China; “Qingdao Mingserve
Tech, Qingdao, Shandong, P.R. China

ABSTRACT ARTICLE HISTORY
Planetary gearboxes are critical components in a wide range of Received 1 June 2025
applications, including electric motors, automotive systems, and Accepted 25 July 2025
wind turbines. However, current fault diagnosis methods face sig- KEYWORDS

nificant challenges in accurately detecting faults due to the pre- Gearbox; fault diagnosis;
valence of large amounts of unlabelled data and interference from semi-supervised learning;
transient events. To address these issues, this paper proposes transfer learning; vibration
a novel Semi-Supervised Transfer Learning (SSTL) approach. SSTL signal; transient noise
integrates semi-supervised techniques with transfer learning and

introduces innovative normalisation strategies to overcome the

limitations of traditional methods, particularly in environments

characterised by transient interference and limited labelled data.

The proposed approach offers several key contributions: (1) a semi-

supervised transfer learning model that effectively leverages unla-

belled data while mapping the source to the target domain,

thereby enhancing fault detection accuracy, (2) a label migration

and matching strategy that assigns pseudo labels to transient

signals, addressing persistent challenges in signal processing, and

(3) a limiting normalisation strategy designed to mitigate the

effects of transient interference and stabilise vibration signals,

thus improving the robustness of the model. Two case studies are

presented to validate the effectiveness of SSTL, demonstrating its

superiority over existing methods in terms of fault diagnosis accu-

racy and reliability, especially in scenarios with limited labelled data

and frequent transient interference.

1. Introduction

Planetary gearboxes are crucial components used in a wide range of applications,
including electric motors, the automotive and aviation industries, wind turbines, and
various other industrial environments. Their widespread use is primarily attributed to
key advantages, such as high transmission ratios, compact design, and significant load-
carrying capacity [1-3]. However, the gearboxes in these applications are often subject to
varying speeds, dynamic loads, and harsh operating conditions, which can consequently
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lead to localised failures such as wear, cracks, broken or damaged teeth, and pitting.
Therefore, detecting and addressing these faults promptly is critical [4-7]. As a result, the
development of advanced and effective fault diagnosis techniques is imperative. Not only
are such techniques crucial for the early detection of potential issues, but they also ensure
safe and reliable system operation, thereby enhancing overall system reliability.
Furthermore, these advanced diagnostic methods can potentially reduce maintenance
costs and extend the lifespan of planetary gearboxes across various industrial
applications.

In recent years, data-driven-based fault diagnosis methods [8-12], particularly those
incorporating deep learning techniques, have seen rapid and significant advancements.
These advancements can be primarily attributed to the superior capacity of deep learning
to automatically extract high-level feature representations from raw signals, thereby
facilitating high-precision diagnostic predictions in an end-to-end manner. Over the
past decade, numerous impressive algorithms based on deep learning have emerged,
including but not limited to convolutional neural networks [13], generative net-
works [14,15], semi-supervised learning models [16,17], and self-supervised models
[18]. To illustrate the effectiveness of these methods, several studies have significantly
contributed to the field. For instance, Jamil et al. [19] propose a novel deep boosted
transfer learning method for wind turbine gearbox fault detection, which effectively
mitigates negative transfer by selectively focusing on relevant information from the
source machine. This approach leads to enhanced accuracy compared to traditional
deep learning and deep transfer learning methods. Similarly, Zhang et al. [20] introduce
a nearly end-to-end deep learning approach for diagnosing wind turbine gearbox faults
using vibration signals. Their method integrates Empirical Mode Decomposition (EMD)
to improve model efficiency and generalisation, particularly under nonstationary work-
ing conditions. Furthermore, Chen et al. [21] present a physics-informed hyperpara-
meter selection strategy for Long Short-Term Memory (LSTM) neural networks, which
aims to enhance fault detection in gearboxes by focusing on maximising the discrepancy
between healthy and faulty states, rather than solely minimising validation mean squared
error. Additionally, Zhang et al. [22] propose an intelligent fault diagnosis method based
on an adaptive intraclass and interclass convolutional neural network (AIICNN). This
method improves sample distribution and diagnostic accuracy by addressing variable
working conditions through adaptive constraints.

Despite the impressive performance of deep learning-based methods, these
approaches necessitate substantial amounts of labelled data for training, which presents
challenges for fault diagnosis in real-world industrial applications. Consequently, exten-
sive research has been conducted on semi-supervised learning, aiming to leverage large
quantities of unlabelled data to support and enhance the performance of deep learning
models with limited labelled data. Zhang et al. [23] propose the Semi-Supervised
Momentum Prototype Network (SSMPN), an advanced few-shot semi-supervised learn-
ing approach designed to improve gearbox fault diagnosis in scenarios with limited
labelled samples. This method effectively utilises prototype networks to capture feature
mappings, employs Monte Carlo uncertainty for refined pseudo-labelling, and incorpo-
rates momentum-based prototype fine-tuning to enhance model performance. Similarly,
Zhao et al. [24] introduce a novel two-stage hybrid semi-supervised learning framework
that integrates grouped pseudo-labelling with consistency regularisation. This method
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addresses challenges related to teacher model accuracy and the limitations of data
augmentation techniques for 1-D vibration signals, thereby significantly improving
fault diagnosis accuracy in rotating machinery despite the constraints of limited labelled
data. Furthermore, Xiao et al. [25] present a semi-supervised hybrid framework aimed at
diagnosing converter transformers with limited labelled data. Their framework combines
multi-feature graph generation, which encodes vibration signals into time, frequency,
and energy graphs, with a blend of unsupervised and supervised learning strategies and
soft voting decision-making. This comprehensive approach enhances intelligent fault
diagnosis capabilities, even under challenging dataset conditions. Despite the notable
effectiveness of semi-supervised learning-based methods in addressing the challenges
associated with limited labelled data in fault diagnosis, three significant challenges
persist, which warrant further investigation and methodological improvements.

(1) Pseudo-labelling Inaccuracy: The generation of pseudo labels for unlabelled data
through data enhancement techniques often results in substantial deviations from
true labels. Consequently, these inaccurate pseudo labels fail to positively influ-
ence the model’s feature extraction process and may even introduce noise or bias
into the learning algorithm. This challenge underscores the need for more robust
and accurate pseudo-labelling techniques that can better approximate the under-
lying data distribution.

(2) Limited Dataset Expansion: While methods for constructing data matching pairs
partially address data scarcity, they offer only modest dataset expansion and fail to
introduce entirely new samples. This limitation constrains the model’s ability to
generalise to unseen data, particularly in scenarios where fault patterns exhibit
high variability or complexity. As a result, the overall utility of these methods in
enriching dataset diversity remains limited.

(3) Insufficient Leverage of Unlabelled Data: Despite advancements in semi-
supervised learning, current methods do not fully exploit the potential of unla-
belled data in fault diagnosis tasks. This inefficiency stems from the combined
effects of pseudo-labelling inaccuracies and limited dataset expansion.
Consequently, there is a pressing need for innovative approaches that can more
effectively leverage unlabelled data while simultaneously enhancing the quality
and diversity of the training dataset.

Given the inherent limitations of semi-supervised learning, researchers have increasingly
turned their attention to transfer learning, particularly those involving the fine-tuning of
pre-trained models to achieve improved diagnostic performance. This shift in focus is
largely due to the potential of transfer learning to overcome the constraints associated
with limited labelled data and to leverage knowledge from related domains. For instance,
Xiang et al. [26] introduce the Classifier Constrained Domain Adaptation Network
(CCDAN), an innovative transfer unsupervised learning method designed to enhance
rotor fault diagnosis by extracting transferable features from simulated samples and
improving classification accuracy through the use of classifier constraints and multiple-
kernel maximum mean discrepancy (MK-MMD). Furthermore, Sun et al. [27] propose
a novel Cross-Domain Transfer Learning with Fine-Tuning Mechanism (CTL-FTM) for
gearbox fault diagnosis, which effectively addresses challenges associated with
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imbalanced datasets and the complexities of hyperparameter tuning by leveraging pre-
trained models and shallow networks, leading to enhanced diagnostic accuracy and
generalisation capability. However, under certain operating conditions, instantaneous
fluctuations may arise, manifesting as transient disturbances within the vibration signal.
These disturbances can adversely affect the stability and reliable performance of the
equipment. It is crucial to acknowledge that when vibration signals encounter interfer-
ence, especially transient interference, the effectiveness of transfer learning methods
frequently fails to meet anticipated results. This shortcoming highlights the imperative
for continued research and development in this domain, as the current methods may not
fully address the complexities introduced by such interferences.

However, if this unlabelled data can be effectively leveraged alongside a limited set of
labelled data, there is significant potential to enhance the model’s performance, accuracy,
and reliability. This approach aligns with the growing trend in machine learning towards
leveraging large amounts of unlabelled data to improve model robustness and general-
isation. In the light of these challenges and the growing demand for more adaptive and
efficient learning paradigms in industrial mechanical systems, a novel approach is
proposed: SSTL. This method is specifically designed to address the issue of limited
labelled data in the presence of transient interferences by integrating semi-supervised
learning and transfer learning with novel normalisation strategies. The SSTL approach
represents a synthesis of multiple machine learning paradigms, aiming to harness the
strengths of each while mitigating their individual weaknesses. By combining the ability
of semi-supervised learning to leverage unlabelled data with the knowledge transfer
capabilities of transfer learning, SSTL offers a promising solution to the persistent
challenges in fault diagnosis for planetary gearboxes.

The primary contributions of this paper can be summarised as follows:

(1) A novel SSTL framework is proposed, which adeptly incorporates the character-
istics of unlabelled data to enhance model training while simultaneously lever-
aging transfer learning techniques to map the source domain to the target domain.
This innovative approach effectively addresses the critical challenge of low
pseudo-label reliability in unlabelled data, thereby significantly improving the
model’s detection accuracy. Furthermore, this framework bridges the gap between
supervised and unsupervised learning paradigms, offering a robust solution for
scenarios where labelled data are scarce.

(2) A label migration and matching strategy is introduced to facilitate label transfer
and alignment between homologous signals. This strategy effectively addresses the
critical challenge of accurately assigning pseudo labels to transient interference
signals, which has long been a bottleneck in signal processing and machine
learning applications. By employing this method, the model achieves a higher
degree of precision in identifying and categorising transient phenomena, thus
enhancing its overall performance and reliability.

(3) A novel limiting normalisation strategy is proposed to mitigate the impact of
transient interference on the model and stabilise the characteristic scale of vibra-
tion signals. This innovative approach not only enhances the efficiency of the
model training process but also enables the effective development of a fault
detection model capable of withstanding transient interference. Consequently,
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this strategy significantly improves the model’s robustness and generalisability,
making it particularly suitable for real-world applications where signal noise and
interference are prevalent.

The paper is organised as follows: In Section 2, a comprehensive review of the relevant
literature on semi-supervised learning and transfer learning is provided, establishing the
foundational concepts that underpin this research. Section 3 then elaborates on the
details of the proposed SSTL approach, with a focus on preserving spatial homogeneity.
Following this, Section 4 presents the experimental results obtained from two fault
diagnosis datasets, offering a thorough analysis and comparison of the findings.
Finally, Section 5 synthesises the key insights derived from the research and provides
the concluding remarks of the study.

2. Preliminaries
2.1. Semisupervised learning

For the semi-supervised learning-based fault diagnosis, it is crucial to consider the nature
and composition of the available data. Typically, the collected signals comprise two
distinct datasets: a limited labelled dataset {xf“be’}fil and a substantial unlabelled dataset

{xmlabey ™ Within this framework, x; represents individual time series samples, each
with a sequence length I, where i € {1,1}. The label {l]l-”’bel}jN:1 € {1,2,...,C} associated

with the labelled dataset {xﬁ“hez}il represents C distinct gear states. It is important to
note that N and M denote the sizes of the labelled and unlabelled datasets, respectively,
with the relationship N < M holding true, emphasising the scarcity of labelled data
relative to unlabelled data.

To quantify the proportion of labelled data in the semi-supervised learning context,
we introduce the labelling rate «, defined as the ratio of N to N + M. One of the primary
objectives in this domain is to effectively leverage the abundant unlabelled data in
{xunlaben M 46 enhance the model’s ability to fit the limited labelled data in {x/*<}N |
thereby achieving performance levels that surpass those attainable through conventional
supervised learning approaches. Concurrently, there is a strong emphasis on minimising
a, as this directly translates to reduced time and cost associated with manual data
annotation, an often resource-intensive process in real-world applications.

The landscape of semi-supervised learning methodologies can be broadly cate-
gorised into three distinct approaches, each with its own merits and challenges. The
first approach, unsupervised pre-training, as exemplified by the works of Wang et al.
[28] and Zhu et al. [29], involves an initial phase where the model learns representa-
tions from unlabelled data using unsupervised techniques, followed by a fine-tuning
phase utilising the available labelled data. This approach leverages the abundance of
unlabelled data to establish a robust foundation for feature extraction before refining
the model with task-specific labelled data. The second category encompasses co-
training methods, as demonstrated in the research of Zhang et al. [30], Li et al.
[31], and Lee et al. [32]. These methods simultaneously train models using both
labelled and unlabelled data, resulting in a composite loss function that combines
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a supervised loss L; and an unsupervised loss L,. The unsupervised loss L, typically
quantifies the discrepancy between data distributions, computed from a large sample
of data. The final loss L is formulated as a weighted sum of these components:
L = L; + wL,, where w serves as a hyperparameter to balance the contributions of
supervised and unsupervised learning objectives. The third approach, known as self-
training, is exemplified by the work of Jiao et al. [33] and Pu et al. [34]. This iterative
method begins by training the network on a small subset of labelled data.
Subsequently, the trained model is employed to classify unlabelled samples, with
those classified with high confidence being incorporated into the training set. This
process is then repeated, gradually expanding the effective labelled dataset and refin-
ing the model’s performance.

2.2. Transfer learning

In the domain of transfer learning, existing methodologies can be broadly categorised
into two primary approaches: statistically based methods and adversarially based
methods. While both aim to improve the transferability of knowledge across
domains, they employ distinct strategies to achieve this goal. The fundamental
principle underlying statistically based transfer learning methods, as elucidated by
Chen et al. [35] and Zhang et al. [36], is the pursuit of domain-invariant representa-
tions. This is typically accomplished by minimising the distribution divergence
between the source and target domains. By doing so, these methods strive to create
a shared feature space that is less sensitive to domain-specific variations, thus
facilitating more effective knowledge transfer. On the other hand, adversarially
based methods, such as those proposed by He et al. [37] and Wang et al. [38],
draw inspiration from the innovative framework of Generative Adversarial Networks
(GANs). GANs, characterised by their zero-sum game dynamics, have emerged as
a promising machine learning paradigm. In the context of transfer learning, adver-
sarial approaches leverage this competitive mechanism to align features across
domains.

To further illustrate the application of these concepts, Wang et al. [39] proposed
a novel approach that utilises labelled data from both the source domain and
a limited subset of the target domain. This method employs supervised training
techniques for the feature extractor and classifier components. Additionally, to
promote the learning of domain-invariant features, a discriminator is incorporated
to align latent representations across domains. Addressing scenarios with extremely
limited fault data, particularly in single-sample instances, Han et al. [40] introduced
an innovative multi-domain discriminator. This enhancement aims to improve
domain-invariant feature extraction, consequently boosting fault diagnostic perfor-
mance in resource-constrained environments. In contrast to the approach presented
by Han et al. [40], Li et al. [41] developed a method that leverages multiple
classifiers, utilising label information for more accurate fault prediction.
Furthermore, their approach incorporates a discriminator to align features between
the source and target domains, thereby enhancing the overall transferability of the
learned representations.
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3. Semi-supervised transfer learning preserving spatial homogeneity

The proposed architecture is composed of four distinct yet intricately interconnected
blocks, each fulfilling a critical function within the overarching framework: (1) a teacher-
student model, (2) the construction of pseudo labels, (3) data matching with pseudo-
labelling, and (4) normalisation with amplitude-limited. This innovative approach is
designed to effectively leverage both labelled and unlabelled data in scenarios charac-
terised by a paucity of labelled instances, thereby enhancing model performance and
generalisation capabilities. The integration of the teacher-student model paradigm, in
conjunction with the pseudo-labelling technique, enables the architecture to efficiently
utilise both labelled and unlabelled data. This methodology is particularly advantageous
in contexts where labelled data is scarce or prohibitively expensive to obtain, as it
facilitates the exploitation of abundant unlabelled data to augment performance and
generalisation capabilities. Moreover, the iterative nature of this process, wherein the
student model has the potential to assume the role of the teacher in subsequent iterations,
engenders continuous refinement and adaptation of the model to evolving data
distributions.

The teacher-student model serves as the cornerstone of knowledge transfer within the
architecture, facilitating the propagation of learned representations from a more experi-
enced model (the teacher) to a less experienced one (the student). This transfer of
knowledge accelerates the learning process and enhances the student model’s ability to
generalise from limited labelled data. Concurrently, the construction of pseudo labels
represents a crucial step in leveraging unlabelled data. By assigning probabilistic labels to
unlabelled instances, this component effectively expands the training set, allowing the
model to learn from a broader range of examples. The data matching process with
pseudo-labelling further enhances the model’s ability to learn from unlabelled samples.
By aligning the distributions of labelled and unlabelled data, this component ensures that
the knowledge gained from pseudo-labelled instances is consistent with the underlying
distribution of the labelled data. This alignment is critical for maintaining the integrity of
the learning process and preventing potential biases that may arise from discrepancies
between labelled and unlabelled data distributions. Finally, the normalisation with
amplitude-limited components plays a crucial role in maintaining the stability and
consistency of the learning process. By constraining the range of values within the
network, this module mitigates the risk of exploding or vanishing gradients, which can
impede effective learning. This normalisation process ensures that the model remains
robust and stable throughout the training process, even when dealing with diverse and
potentially noisy data sources.

The synergistic interaction among these components engenders a robust frame-
work capable of effectively learning from both labelled and unlabelled data. This, in
turn, potentially leads to improved performance across various machine learning. The
proposed approach may prove particularly beneficial in domains where the acquisi-
tion of labelled data is challenging or resource-intensive, such as medical imaging,
natural language processing, or autonomous systems. The holistic framework of this
architecture, elucidating the interconnections and flows between the four primary
components, is visually represented in Figure 1, while the comprehensive algorithm is
elaborated in Algorithm 1 and Algorithm 2. They provide a comprehensive overview
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Figure 1. The proposed SSTL preserving spatial homogeneity.

of the proposed methodology and its constituent parts, facilitating a deeper under-
standing of the architecture’s operational mechanics and the interplay between its
various elements.
Semi-supervised learning scenarios involve labelled and unlabelled datasets contami-
nated by random transient noise interference. These datasets are denoted as
{xfimp ’I“ben}il and {xl(imp ”mlubd)}f\il respectively, where x; represents an individual sam-
ple in the dataset, characterised by a length of L, the value of each data point is denoted as
R, such that x;|R'*L. The variables N and M represent the cardinality of the labelled and
unlabelled datasets, respectively. Furthermore, the ratio N/(N + M) represents the
proportion of labelled data to the total data, referred to as the labelling rate, denoted
by a. This parameter a serves as a critical hyper-parameter, where a higher value of «
indicates an enhanced capacity of the model to extract meaningful features from the data.
The methodology begins with a crucial pre-processing step, whereln transient noise
interference is systematlcally removed from both the labelled datasets {x; (imp. lahez)} and

the unlabelled datasets{x; (imp. lmlahel)}l 1~ This noise removal process is essential for
improving the signal-to-noise ratio and enhancing the quality of the input data, thereby
facilitating more accurate subsequent analyses. Following this pre-processing, these

refined datasets are denoted as {x(free imp label)y N —, and {x; (freeimp. ""lahel)} —,» respectively.

Subsequently, the dataset {x(ﬁee mp; label)}l | is employed to train a teacher model
using supervised learning techniques. The trained teacher model, leveraging its knowl-
edge acquired from the labelled data, is then utilised to classify the dataset
{ (free imp, unlabel)}

i=1

._;. This classification process generates confidence scores, denoted

by f3., and pseudo labels, denoted by {l}p S"e}J \» for each sample in the unlabelled dataset.

The next phase involves a critical matching process, wherein the confidence scores f3,,
pseudo labels {l}'7 S“e}yl, and the original noise-contaminated unlabelled dataset

(imp,unlabel)

{xl(zmp unlubd)}l , are combined to create a new dataset {x; }2 . This matching

process is crucial for leveraging information from both labelled and unlabelled data,
thereby enhancing the overall learning process. The matching algorithm employs
a threshold-based approach to select high-confidence pseudo-labelled samples, ensuring
that only the most reliable predictions from the teacher model are incorporated into the
student model’s training data.
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In the final stage, a student model is trained using both the original labelled
dataset {xi(’mp’l“bel)}N and the newly obtained dataset {xl(’mp’”"l“ el)}?zl. This

i=1
approach allows the student model to benefit from the knowledge distilled by the
teacher model, as well as the additional information provided by the pseudo-
labelled data. The student model’s training process incorporates a carefully designed
loss function that balances the contributions of labelled and pseudo-labelled sam-

ples, ensuring optimal learning from both sources.

3.1. Teacher model

To identify and characterise transient interference in the datasets {xgimp ’labd)}fil and

{x(imP unlabe) }f\il, a first-order Markov model [4] is employed for signal analysis. This

1
approach begins by discretising the continuous signal x;|R'*! into a finite number of
states. For each value R in the signal, the corresponding interval number j is determined,
which is then treated as the state S; of the signal at that particular moment. This process
effectively transforms each continuous state into an independent state sequence, as

defined by the following equation:

Si= { npin — 1 , Rk = njmx(xi) M

where k € (1,L). ny;, represents a predefined number of states. It is important to note
that the size of ny;, directly affects the discrete state density, thus influencing the
granularity of the analysis. After partitioning x; into ny;, states, each state S; is defined
by the following formula.

S; = [min(x;) + (j — 1) - A,min(x;) +j - A]
)

_ max(x)—min(x;)
A - Npin
where A represents the equidistant length of the partition, ensuring uniform state
intervals. Subsequently, based on the state sequence S, a statistical analysis is performed
to determine the frequency of state transitions. This analysis is used to construct
a Markov transition matrix, MTM;;, which is mathematically expressed as:

L-1
=1

where §(x, y) denotes the Kronecker Delta function, which equals 1 when x = y and 0
otherwise. To derive meaningful transition probabilities, MTM;; is normalised by rows,
resulting in the Markov transition probability matrix, Mrpy. This matrix represents the
probability of each state i transitioning to state j:

_ MTM;
7 Y, MTM;

Mrpy (i, j) = Py

The element Mrpy (i, j) represents the likelihood of the system transitioning from the
current state to another state. Under normal conditions, the signal’s state transitions

P
(4)
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should exhibit smooth and coherent characteristics, with the discretised signal highly
concentrated around the predefined discrete intervals. However, in the presence of
transient interference, the signal’s state transitions may experience abrupt changes.
Therefore, Mypy (i, j) serves as a powerful tool for localising transient interference within
the signal.

To identify areas of extreme transition, a threshold t, is established for P;. This
threshold is a critical hyperparameter in the analysis. When P;; exceeds this threshold,
the corresponding region is classified as an area of extreme transition, indicating the

presence of transient interference. The datasets {xﬁimf’ 'l“bel>}fi1, {x,(im‘p runlabel) 1, and the

transition probability matrix Mrpy(i,j) are then input into a supporting extraneous
transient noise module. This module is designed to eliminate transient interference
using a set-to-zero processing method, defined as:

il = {xim, Py<ty 2

(free—imp,label) }N

This process yields a labelled dataset {x; .; and an unlabelled dataset

{xi(f ree~imp unlabel) 1M, both free from transient interference.

Following the noise removal process, a backbone Encoder block E(-) is employed to
extract high-level semantic features z; = E(x;) from each sample. These features are then
input into a classification header C(-), which outputs a probability distribution vector
pi = C(z;) representing the predicted health status. The model’s performance is evalu-

ated using cross-entropy loss L;, calculated based on the prediction results p; and the true
labels {l}“be’}jl\ilz

N
Ly = —%; llabel . Tog(p;) (6)

This loss function is used to train the teacher model, after which the model parameters
are locked to preserve the learned knowledge.

3.2. Construct pseudo labels

In the second stage of the process, the set of unlabelled, interference-free samples,
denoted as {ngree_’m‘p runlabel) }f\il, undergoes classification using the pre-trained teacher
model. Subsequently, the resulting output is processed through a SoftMax function,

which can be mathematically expressed as follows:
B, = Soft Max(p;) (7)

The SoftMax function serves a crucial role in this context, as it normalises the
elements of an input vector to values between 0 and 1, while ensuring that the sum
of all elements equals 1. This normalisation property is particularly useful for
probabilistic interpretations. The output of the SoftMax function is defined as the
confidence score f3,, which represents the probability that a given sample belongs to
a specific category. It is important to note that the threshold f for f. is a hyper-
parameter that requires careful tuning. In the proposed methodology, pseudo labels
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{lfme}jz\il with confidence scores . > 0.9 are considered to be reliable and are

treated as true labels. This threshold selection is critical for maintaining the quality
of the pseudo-labelling process. When the model’s predicted probability for a given
sample reaches or exceeds 0.9, the softmax output exhibits a pronounced peak,
indicating a high degree of certainty in the classification. According to the
Maximum A Posteriori (MAP) estimation principle in probability theory, such
high-confidence predictions are more likely to correspond to the true class label,
as the posterior probability of the predicted category substantially exceeds that of
alternative categories. Under these conditions, the assignment of pseudo-labels can

be performed with a relatively low error rate, thereby enhancing the reliability of

(free—imp,unlabel) }M

semi-supervised learning. An essential observation is that {x; iy is

. imp,unlabel . .
derived from {xglmp'ume)}f\il after the removal of interference noise.

Consequently, the labels for these two sets of data should be identical, both
represented by {lfsue}?il. This consistency in labelling is crucial for maintaining

the integrity of the dataset throughout the noise removal process.
The third stage of the procedure involves pairing the corresponding confidence scores

B,» pseudo labels {lfme}j]\il, and the original unlabelled samples with interference

{xfimp nlabe) 1M . Subsequently, pairs where the confidence score falls below the threshold
(i.e. B. <) are eliminated from the dataset. This filtering process results in the creation

{xgimp,unlabel) Q

of new, refined datasets: .=, and its corresponding set of pseudo-labels

{lfme jQ=1- These refined datasets are expected to contain more reliable samples and

labels, which can potentially improve the performance of subsequent machine learning
tasks.

3.3. Normalisation with amplitude-limiting

In the fourth stage of the process, both the labelled samples with interference

{xfimP’label)}fil and the unlabelled samples with interference {x,(im‘v’”"l“bel) ?

undergo amplitude-limited normalisation, constraining their values to the range
of 0 to 1. This normalisation step is crucial for ensuring consistency in the data
representation and facilitating subsequent analysis. Figure 2 provides
a comprehensive visual representation of the various stages of signal processing.
Specifically, Figure 2(a) illustrates the original signal samples containing transient
interference, while Figure 2(b) depicts the corresponding samples after the
removal of transient interference. A comparative analysis of these figures reveals
the significant impact of transient interference on the signal amplitude. Notably,
samples with transient interference obscure the underlying vibration data fluctua-
tions, whereas the removal of such interference unveils the intrinsic amplitude
variations of the vibration signal. Figure 2(c,d) demonstrates the outcomes of
conventional signal normalisation techniques. Although this approach confines
the data within the (0,1) range, it fails to adequately mitigate the effects of
transient interference. In cases where the amplitude of transient interference is
substantial, traditional normalisation may compress the vibration characteristics to
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Figure 2. (a) Original sample containing transient interference; (b) processed sample after removal of
transient interference from (a); (c) samples produced via the application of traditional normalisation to
the raw signal (a), with amplitude constrained to the [0, 1] range; (d) samples generated through
traditional normalisation applied to signal (b), confined to the [0, 1] amplitude range; (e) samples
generated through amplitude-limited normalisation of signal (a); and (f) samples produced by
amplitude-limited normalisation of signal (b).

approximately 0.42, severely impeding the model’s ability to extract meaningful
gear vibration features.

To address these limitations, a new Amplitude-limited Normalisation (ALN) method
is proposed. This approach constrains the vibration signal amplitude within a predefined
range of maximum ALT and minimum —ALT, where Amplitude-limited Threshold
(ALT) is a carefully selected hyper-parameter. The selection of the ALT must be carefully
tailored to the characteristics of each dataset in order to optimise model accuracy and
enhance training efficiency. The mathematical formulation of this technique is expressed
as follows:

Xi[O] = ALT, ] =0

X,‘[l] = —ALT, ]: 1
xi[j], —ALT <x[j] <ALT
ALT, xi[j] > ALT

where j € {1,1}, I is defined as the sample length.

The amplitude normalisation ensures that vibration signals of the same category
exhibit features of comparable scale post-normalisation. As illustrated in Figure 2
(e) and Figure 2(f), this method effectively constrains transient interference within
the (—ALT, ALT) range while preserving the characteristics of the vibration signal
in regions unaffected by interference. It is important to note that the amplitude of
xi may not always reach ALT. In the traditional normalisation procedure for
processing vibration signals subjected to random transient noise, there is
a corresponding variation in amplitude scale. Consequently, signals of the same
type may exhibit diverse amplitude scales, potentially leading to inaccuracies in
feature extraction and obscuring the identification of useful or latent features. To
address this issue, the amplitude of the vibration signal is constrained prior to
normalisation, specifically setting x;{0] = ALT and x;[1] = —ALT in Equation 8.
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This modification ensures that signals with exceptionally small vibration amplitudes
maintain consistent feature scales after normalisation. The selection of an appropriate
ALT value is critical and requires empirical testing, as different datasets may necessitate
different ALT values. Setting ALT too high may fail to adequately limit the impact of
amplitude on normalisation, while setting it too low risks losing essential characteristics
of the vibration signal. Figure 2 provides a comprehensive visual comparison of the
various signal processing stages. It is crucial to emphasise that amplitude-limited normal-
isation is not applied prior to training the teacher model. This decision is based on the
fact that the teacher model is trained using data without transient interference, and
amplitude-limited normalisation, while not eliminating transient interference, may result
in the loss of significant vibration features.

3.4. Student model

In the final stage of this process, the encoder function E(-) is employed to extract
high-dimensional features from the normalised input x/°". X" represents the
output of the amplitude-limited normalisation process applied to

both{xgimfp’”"label)}lQ:1 and {inmP’labd)}fil. This step is crucial for capturing the
intricate characteristics of the vibration signals, which are inherently complex in
nature. It is important to note that transient interference in vibration signals is
typically localised, affecting only a small portion of the time series rather than
permeating the entire signal. Consequently, the data characteristics of
{x(imp,unlabel) Q

imp,label . . . .
1 =, and {xf’mp ¢ e)}il remain consistent in regions unaffected by

imp,label) }N in

transient interference. This property allows for the inclusion of{xf A
the training set of the student model, even after amplitude-limited normalisation
has been applied.

The encoder’s output, denoted as z{“4" = E(x!*"), is subsequently processed through

a fully connected layer to produce the distribution vector p§“dent = C(zi"dent) The cross-
entropy loss is then calculated using the following equation:
tudent 1N+lel’ tudent
Student __ ave Studen
Ly = T NxQ 21 1 - log (p; ) )
i=

This loss function is used to perform gradient updates on the model weights, thereby
training the student model. It is worth noting that I is composed of {l;“be’}jlil and

{ l}?sue’ Q

i };21» encompassing both the original labels and the refined pseudo labels.

4. Experimental validation and comparative analysis
4.1. Case study |

4.1.1. Specifications for data description and test-rig
The gearbox dataset, meticulously collected from a sophisticated gear transmission
system, provides a comprehensive representation of various operational conditions and
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Algorithm 1 Training teacher model

: Initialize parameters, epoch <« E.
Input: {I (imp,label) N1 and {l’ (imp,unlabel) 1\[

: Locate transient pulses position (TPP) TPPI,W] and TP Pyniapel-
: {l.(zmp Jlabel)y N (T—P—Plahd) —0to get {x(f’l‘(‘f’ imp, l(lhf‘[)}

7

{xgzmp unlabel) i:l(TPPunlabel) =0 to get {x (free—imp, unlabel) ,{\[1

: for each epoch in 1: F do

{z(free—imp,la,bel) }N
T

AW o e

was used to train Encoder block.

label —imp,unlabel) M
(free implabel) N, {J:Efme i 5)}7%1 and teacher model

® N o w

: end forreturn {z;

CHOR

Algorithm 2 Training student model

1: Initialize parameters, 3 < 3, ALT < ALT, epoch < E, teacher model ©(-).
9 {lﬁ_)sue _ @({ (free imp,unlabel) M )

3: Matches {L (imp, “"labez }ﬁl and {l?sue}?il
4 if {]pme 1, <B then

5. Delete this sample, get {z; (mp,unlabel) } <, and {If' sue’ }
6: end if ) )

7 Dataset D — {fljgzmp.unlabel)}iQ:1 C{mgzmpilabel) ﬁ\;l-

8 if T [‘]i >ALT then

9: x; [j] = ALT.

10: end if

11: if z; [j] < — ALT then

12: x; [j] = —ALT.

13: end if

14: Get dataset D’

15: Normalize D’ to [0,1] and get dataset Dyor.

16: for each epoch in 1: FE do

17: Dyor was used to train Encoder block.

18: end forreturn A gear fault diagnosis model ©4(-) with resistance to transient
disturbance.

fault types. This system, as illustrated in Figure 3, comprises several principal compo-
nents, including a tachometer, driven motor, torque transducer, two-stage parallel gear-
box system, load gearboxes, and load motor. The placement of the accelerometer is
especially noteworthy, as it is affixed to a separate disk. For a closer examination,
a detailed view of this configuration is provided in the zoomed section of Figure 3. To
ensure a high-fidelity representation of the system’s dynamics, the dataset is sampled at
a frequency of 12.8 kHz. Furthermore, it encompasses a range of operational conditions,
with rotational speeds systematically varied from 1600 to 2400 r/min. In addition to
normal operating conditions, the dataset incorporates five common gear fault types,
illustrated in Figure 4, namely: miss (missing tooth), chip (cracked teeth), root (crack at
tooth root), surface (wear on gear surface), and eccentric (misaligned geometric and
rotational centres). The gear meshing configuration is depicted in Figure 5(a), while
Figure 5(b) illustrates the internal configuration of the parallel gearbox system. In the
latter, the faulty gear is clearly demarcated with a dotted box for ease of identification.
To facilitate in-depth gear diagnosis analysis, vibration data is collected along the
x-axis of the accelerometer while the gear rotates at a constant speed of 1600 rpm. Each
category, including the healthy condition, comprises 768,000 data points gathered over
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Driven motor q gep
transducer gearbox system

Load gearboxes Load motor
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Figure 3. Experimental test-rig of gear transmission system.

(a) (b)
(d) (e)

Figure 4. (a) Miss (missing tooth), (b) chipped (cracked teeth), (c) surface (wear on gear surface), (d)
root (crack at tooth root), (e) eccentric (misaligned geometric and rotational centres).

a 60-second duration. This extensive dataset provides a robust foundation for the
development and validation of fault diagnostic algorithms, enabling researchers to
explore a wide range of operational conditions and fault types within a controlled

experimental setting.
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(a)

Figure 5. (a) Gear meshing, (b) Internal configuration of parallel gearbox system.

4.1.2. Comparative networks and results analysis

The primary objective of this research is to examine and analyse the performance
variations exhibited by gearboxes when subjected to transient noise disturbances
across a diverse range of environmental conditions and fault scenarios. In order to
conduct this research with rigorous methodology, external impacts such as transient
noise are carefully measured and systematically combined with the gearbox vibrations
during the data collection process, thereby obtaining a realistic representation of
transient noise disturbances. To ensure the integrity of the testing procedure and
mitigate potential bias, the dataset is initially partitioned into two distinct subsets:
a training set comprising 80% of the data, and a test set encompassing the remaining
20%. Subsequently, with the aim of simulating real-world scenarios of label scarcity,
the number of labelled samples is carefully determined based on the parameter «,
which is previously introduced in section 3.2 For any given set of N samples
representing an identical state, only a fraction (@ x N) of these samples retain their
original labels, while the labels for the remaining samples are systematically removed.
This approach allows for a controlled simulation of varying degrees of label avail-
ability. To comprehensively assess the model’s performance under different levels of
label scarcity, the dataset is evaluated using three distinct label rates: 5%, 10%,
and 15%.

To assess the superiority of the proposed method, it is rigorously compared with state-
of-the-art (SOTA) techniques, which include three supervised learning methods and
three semi-supervised learning methods. These methods include: DenseNet (Impulse
noise), a supervised approach that exclusively utilises {xfimp Aabe) }¥ | to train the Encoder
block and classification head; DenseNet (Denoise), another supervised approach that

trains the Encoder block and classification heads using only {xl-(freefimp ’label)}fil; and

DenseNet (Amplitude limited), which trains the Encoder block and classification heads

using Amplitude-limited {xfimP ’l“hd)}fil. Additionally, the comparison encompasses

SimCLR [42], a contrastive learning method that employs additional negative samples
and a projection layer for training; Fast-MoCo [43], an advanced contrastive learning
method that increases the number of negative pairs using momentum encoders and
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a memory bank and is jointly trained with supervised learning; and ITSSL [44], a semi-
supervised method that utilises time-amplitude data augmentation techniques for train-
ing. This comprehensive comparison allows for a thorough evaluation of the proposed
method’s effectiveness across various learning paradigms and techniques.

The successful training of a deep learning model is largely contingent upon the
selection of appropriate hyper-parameters. To validate the generality of the proposed
semi-supervised transfer (SSTL) framework, both teacher and student models employed
the widely adopted DenseNet121 architecture. DenseNet121 features a densely connected
structure that facilitates efficient extraction of sample features and has demonstrated
excellent performance across a variety of models. Initially, the learning rate is set to
0.0001, with the customary practice of commencing training gradually and making
adjustments as the process unfolds. Subsequently, the learning rate for each epoch is
halved, a strategy aimed at efficiently converging the model. The optimiser employed in
this architecture is Adam, a popular optimisation algorithm renowned for its adaptive
learning rate adjustments across different parameters. Adam ingeniously combines the
principles of RMSprop and momentum optimisation, rendering it suitable for a diverse
array of deep learning tasks. The loss function designated for the training procedure is
CrossEntropyLoss, which is commonly utilised for classification problems to minimise
the discrepancy between predicted and actual class labels. This function measures the
differences between probability distributions, making it an apt choice for training
classification models. Furthermore, the framework incorporates the Gaussian Error
Linear Unit (GELU) activation function. GELU is a non-linear activation function that
has garnered attention in recent years due to its capacity to enhance the performance of
deep neural networks. To mitigate overfitting and improve generalisation, a dropout rate
of 0.1 is applied. Dropout is a regularisation technique that randomly sets a small fraction
of input units to zero during training, thereby preventing the model from over-relying on
specific features and enhancing its ability to generalise to unseen data. Lastly, the training
process is conducted over 50 epochs. An epoch refers to a complete pass through the
entire training dataset, and training over multiple epochs allows the model to iteratively
update its parameters and learn more thoroughly from the data. The highest test
accuracies achieved across all datasets are presented in Table 1, providing
a comprehensive overview of the model’s performance under various conditions and
configurations.

The comparative results, indicated by accuracies across all datasets as presented in
Table 1, reveal several significant insights into the performance of various learning
methods. A notable inverse relationship between label rate and model performance is
observed, with all methods experiencing a precipitous decline in accuracy as the label rate
decreases, thus highlighting the detrimental impact of label scarcity. Among the evalu-
ated methods, SSTL consistently demonstrates superior performance, achieving the
highest accuracy across various label rates and showcasing its robustness in diverse
data scenarios. When comparing semi-supervised learning approaches with amplitude-
limited normalisation and supervised learning, the latter two exhibit lower training
accuracy, suggesting that amplitude-limited normalisation may excessively attenuate
time-related features in supervised learning contexts. Conversely, semi-supervised train-
ing, while capable of extracting sufficient time features, is more susceptible to noise
interference. Interestingly, within the semi-supervised learning paradigm, amplitude-
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Table 1. Comparative analysis of experimental results for case study I.
A %) -
ccuracy(%) . Label rate

Model 5% 10% 15%

DenseNet (Impulse noise) [45] 28.84+0.18 48.7+0.03 68.3+0.08
DenseNet (Denoise) 73.5+0.5 85.54+0.11 90.5+0.15
DenseNet (Amplitude-limited) 32.3£0.96 54.6£0.06 75.4+0.07
SimCLR [42] 83.3+0.35 88.6+0.5 97.1£0.35
Fast-MoCo [43] 84.6+0.31 91.5+0.16 97.4+0.49
ITSSL [44] 87.1+£0.37 93.4+0.39 95.5+0.57
SSTL (Ours) 95.3+0.24 97.5+0.34 98.5+0.15

limited normalisation strikes a balance by sacrificing some time characteristics without
compromising model accuracy, while effectively mitigating the impact of transient noise.
Furthermore, semi-supervised learning methods consistently outperform their super-
vised counterparts, with ITSSL achieving commendable accuracy but still falling short of
SSTL’s performance. This discrepancy can be attributed to ITSSL’s inability to completely
eliminate transient noise and its vulnerability to challenging samples, whereas the
proposed method incorporates a confidence-based sample selection mechanism, result-
ing in a more stable model fitting process characterised by faster convergence and higher
accuracy.

For further comparative analysis, a 15% labelling rate is employed in Case Study I for
experimental validation, with results depicted in Figure 6. The proposed SSTL demon-
strated a remarkable improvement in diagnostic accuracy by 3%. While the supervised
learning method such as Densenet (Denoise) achieved an accuracy of 90.5%, and the
semi-supervised learning method reached 97.4%, SSTL attained an impressive 98.5%.
These results emphatically underscore SSTL’s superiority over both supervised and other
semi-supervised methods, demonstrating the efficacy of the proposed SSTL in capturing
underlying features of unlabelled signals and consequently enhancing diagnostic perfor-
mance in scenarios with limited labelled data. Furthermore, Figure 6 illustrates accuracy
fluctuations of SSTL and other comparative methods in the SSL with a 5% labelled rate.
In this most challenging semi-supervised learning scenario, SSTL achieves remarkable
performance, attaining an average accuracy of 95.3%. Compared to traditional super-
vised learning methods, SSTL’s performance improves by 66.5%, 21.8%, and 63%,
respectively. In relation to other semi-supervised learning methods, SSTL’s performance
increases by 12%, 10.7%, and 8.2%, respectively. Moreover, SSTL exhibits stable perfor-
mance across experiments, with accuracy consistently ranging from 93% to 97%, sig-
nificantly surpassing results obtained from most supervised and semi-supervised
learning methods. These experimental results provide compelling evidence that the
proposed framework not only outperforms traditional supervised learning methods
and other semi-supervised approaches but also effectively leverages underlying features
from unlabelled data. Consequently, it significantly enhances diagnostic performance in
scenarios characterised by data scarcity, thus addressing a critical challenge in machine
learning applications.

4.1.3. Comparison of ablation experimental results
(a) Influence of Aptitude Limiting Threshold (ALT)
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Figure 6. Experimental results for various methods applied to case study | with 5% of the data
labelled.

In order to comprehensively investigate the impact of the Amplitude Limiting
Threshold (ALT), a crucial hyper-parameter that influences the amplitude scale of
vibration signals, a meticulous ablation study is conducted. Figure 7 presents a detailed
illustration of the test accuracy results obtained from various ALT configurations of the
SSTL model at a 5% labelled rate. Moreover, to facilitate a more in-depth analysis of the
model’s performance stability, a comparative analysis of the accuracy convergence is
provided in the highlighted and zoomed region in Figure 7. The results of this study
consistently demonstrate that SSTL implementations incorporating the amplitude-
limited normalisation strategy exhibit significantly superior performance compared to
their counterparts that do not employ this strategy. This observation strongly suggests
that the amplitude-limited normalisation strategy effectively mitigates the detrimental
impact of transient interference on vibration signals, thereby enhancing the overall
performance of the model.

Furthermore, a notable trend emerges as the ALT value decreases: the test accuracy
gradually improves, and concurrently, the range of fluctuation in test accuracy becomes
markedly smaller. This inverse relationship between ALT and performance metrics
indicates that the reduction of ALT serves a dual purpose. Firstly, it amplifies the
amplitude features of vibration signals, making them more pronounced and discernible.
Secondly, it constrains these features to a uniform amplitude scale, which, in turn,
substantially enhances the SSTL model’s feature extraction capabilities.

(b) Influence of f3

To evaluate the impact of the hyper-parameter 8 on the proposed SSTL model, a series
of ablation experiments are conducted. These experiments are designed to systematically
investigate the degree of influence that 3 exerts on the model’s performance. Specifically,

0 5 10 15
Epochs

Figure 7. Impact of amplitude-limited.
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Figure 8. Impact of S.

a range of f3 values are tested to quantitatively assess their impact on SSTL’s efficacy and
stability. Figure 8 presents the test accuracy of SSTL for various values at a 5% label rate.
Additionally, a zoomed region in Figure 8 is provided to offer a more detailed view of the
model’s performance during the crucial accuracy convergence stages of training.

The experimental results reveal a notable correlation between the magnitude of  and
the model’s performance. When f is assigned a relatively small value, the test accuracy of
SSTL exhibits significant fluctuations, indicating a lack of stability in the learning process.
This instability can be attributed to the low credibility of pseudo labels generated when f3
is small, which consequently results in a higher proportion of samples that deviate from
the true labels. As a result, this phenomenon increases the complexity and difficulty of
SSTL training. Conversely, as f increases, the test accuracy of SSTL demonstrates
markedly reduced fluctuations, ultimately approaching a consistent level of nearly
95%. This observation suggests that a larger f value is effective in extracting high-
quality samples from the dataset. Furthermore, it mitigates the challenges associated
with insufficient labelled data, thereby supporting more robust and effective SSTL
training. In conclusion, these findings underscore the critical role of 8 in optimising
SSTL performance.

4.1.4. Comparative analysis of visualisations
To conduct a more rigorous quantitative analysis of the diagnostic results, a Confusion
Matrix (CM) is employed in this case study. The results for a 5% labelled rate are
illustrated in Figure 9, thereby providing a visual representation of the model’s perfor-
mance across various fault types. Upon careful examination of the data, it becomes
evident that the proposed SSTL method, as depicted in Figure 9(g), successfully identifies
all fault types with remarkably high accuracy. Notably, it achieves 100% accuracy for
Chipped faults and impressive 98.8% for Eccentric faults, thus demonstrating its superior
diagnostic capabilities. In contrast, the supervised models, specifically DenseNet
(Impulse noise) illustrated in Figure 9(a) and DenseNet (Denoise) shown in
Figure 9(c), exhibit significant limitations in their ability to accurately identify gear
faults. While DenseNet (Denoise) demonstrates a rudimentary capacity to differentiate
between gear faults, it only achieves precise diagnosis for chipped and surface faults,
thereby highlighting its restricted applicability in comprehensive fault detection
scenarios.

Furthermore, the semi-supervised models, including SimCLR (Figure 9(d)), Fast-
MoCo (Figure 9(e)), and ITSSL (Figure 9(f)), display improved fault detection



NONDESTRUCTIVE TESTING AND EVALUATION e 21

(e) (&) (@

Figure 9. Classification performance via confusion matrix: (a) DenseNet (Impulse noise), (b) DenseNet
(denoised), (c) DenseNet (amplitude-limited), (d) SimCLR, (e) Fast-MoCo, (f) ITSSL, (g) SSTL (Ours).

capabilities when compared to their supervised counterparts. However, it is important to
note that their average accuracy remains below 87.1%, indicating room for improvement
in their diagnostic precision. In stark contrast to these aforementioned models, the SSTL
method demonstrates exceptional performance across the board. It accurately diagnoses
all six fault types with an impressive average accuracy of 95.3%, and notably achieves
over 95% accuracy for five of the fault types. This remarkable performance underscores
the robustness of the SSTL framework against transient interference and its effectiveness
in fault diagnosis tasks, particularly in scenarios where the availability of training data is
limited.

In order to conduct a comprehensive comparative analysis of the captured features
across various models, this study employs the t-distributed Stochastic Neighbor
Embedding (t-SNE) dimensionality reduction technique. This advanced visualisation
method allows for a more intuitive understanding of the high-dimensional feature
spaces. The comparative results of this analysis are presented in Figure 10. The visualisa-
tion results for the typical models, including DenseNet (Impulse noise), DenseNet
(Denoised), and DenseNet (Amplitude-limited), are illustrated in Figure 10(a-c). These
visualisations reveal that the scatter points representing different damage categories are
largely clustered together, with minimal separation between classes. This clustering
suggests that these models struggle to effectively differentiate between various failure
types, indicating a limited capacity for fault identification. In contrast, the models
employing semi-supervised learning approaches, namely SimCLR, Fast-MoCo, and
ITSSL, demonstrate an enhanced ability to distinguish between different gear failures,
as evidenced in Figure 10(d-f). This improvement can be attributed to the additional
information leveraged through the semi-supervised learning paradigm. Specifically, the
Fast-MoCo model, as depicted in Figure 10(e), exhibits a notable capability to identify
chipped and eccentric gear failures. This is evident from the well-clustered feature



22 (& CXUETAL

Chipped
Eccentric
Health
Miss.
Root

> e+ @X

Surface

Figure 10. Feature visualisation using t-SNE: (a) DenseNet (Impulse noise), (b) DenseNet (denoised), (c)
DenseNet (amplitude-limited), (d) SIimCLR, (e) Fast-MoCo, (f) ITSSL, (g) SSTL (Ours).

manifolds corresponding to these failure types. However, it is important to note that the
model still faces challenges in differentiating between root, surface, and missing tooth
failures, as indicated by the overlapping feature manifolds for these categories. The
proposed SSTL method, illustrated in Figure 10(g), demonstrates superior performance
in feature discrimination. The feature manifold distributions for almost all failure types
are clearly distinguishable, with scatter points that are either well-clustered or distinctly
separable. This visual evidence strongly suggests that the SSTL model possesses
a remarkable ability to accurately capture and discriminate the latent characteristics
associated with different failure scenarios.

4.2. Case study Il

4.2.1. Specifications for data description and test-rig

In order to further validate and rigorously test the proposed method, an experimental
apparatus known as the Drivetrain Prognostics Simulator (DPS), as illustrated in
Figure 11, is employed for case study II. This test-rig, manufactured by SpectraQuest
Inc., is specifically chosen for its ability to provide complex drivetrain dynamics under
controlled conditions. The DPS comprises several intricately interconnected compo-
nents, each of which plays a crucial role in the overall system functionality. These
components include: a variable speed drive motor, which provides the primary motive
force; a planetary gearbox system, which offers a compact and efficient means of power
transmission; a two-stage parallel gearbox system, which allows for further speed and
torque modifications; resistance-load gear boxes coupled with a resistance-load inducing
electric load motor, which simulate various operational loads; and an electric control unit
that orchestrates and manages the entire configuration. In this experimental protocol, the
signal sampled from the planetary gearbox transmission system is selected for analysis.
This choice is motivated by the complex dynamics exhibited by planetary gearboxes and
their widespread use in various industrial settings. The data acquisition process is care-
fully designed to ensure high-quality, high-resolution data collection. Specifically, the
horizontal position signal is captured at a sampling frequency of 30,720 Hz, which
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Figure 11. lllustration of the drivetrain prognostics simulation (DPS).

provides a detailed temporal resolution for subsequent analysis and allows for the capture
of high-frequency components that may be critical for fault detection and diagnosis.

Each data category in the experimental dataset encompasses 196,608 data points,
collected over a period of 6.4 seconds. This substantial dataset size ensures statistical
robustness and allows for the application of advanced signal processing and machine
learning techniques. Moreover, the 6.4-second duration for each data category strikes
a balance between capturing sufficient system dynamics and maintaining computational
feasibility in subsequent analyses. This comprehensive experimental setup and data
collection protocol are designed to rigorously test the proposed method under conditions
that closely simulate real-world industrial drivetrain operations. By doing so, the study
aims to enhance the practical applicability and validity of the research findings, ulti-
mately contributing to the advancement of prognostics and health management in
industrial systems.

4.2.2. Comparative networks and results analysis

To further explore the effectiveness of the proposed SSTL method, as previously
discussed in case study I, this section compares it with various established techni-
ques, including DenseNet (Impulse noise), DenseNet (Denoise), DenseNet
(Amplitude-limited), SimCLR, Fast-MoCo, and ITSSL. The diagnostic results
obtained from the DPS datasets are detailed in Table 2 and visually represented
in Figure 12. Figure 12 illustrates the experimental results of various methods
applied to the DPS dataset, using 10% labelled data. In this study, the proposed
SSTL approach is compared with established supervised learning models, including
DenseNet (Impulse noise), DenseNet (Denoise), and DenseNet (Amplitude-limited).
The results indicate that SSTL significantly enhances performance relative to these
models. Specifically, with a labelling rate of 10%, SSTL achieves an accuracy of
91.2%, substantially outperforming the supervised learning models DenseNet
(Impulse noise), DenseNet (Denoise), and DenseNet (Amplitude-limited), which



24 (&) C.XUETAL

Table 2. Comparative analysis of experimental results for case study II.

Accuracy(%) Label rate

Model 10% 15% 20%
DenseNet (Impulse noise) 84.51+0.21 85+0.17 88+0.36
DenseNet (Denoise) 83.3+0.19 85.5+0.19 86.8+0.18
DenseNet (Amplitude-limited) 21.4+0.2 48.7+0.16 524-0.22
SimCLR 87.6+0.61 88.2+0.46 88.7+0.89
Fast-MoCo 82.1+3.94 87.41+3.49 88+3.39
ITSSL 84.9+0.2 89.7+0.4 90.7+0.4
SSTL (Ours) 91.21+0.53 93+0.61 93.11+0.65

0 10 20 30 40 50 41 42 43 44 45 46 47 48 49 50
Epochs Epochs

Figure 12. Experimental results of different methods on UESTC dataset with 10% labelled data.

recorded accuracies of 84.5%, 83.3%, and 21.4%, respectively. Furthermore, when
the labelling rate is increased to 20%, SSTL demonstrates even more impressive
results, attaining a diagnostic accuracy of 93.1%. In contrast, the accuracy of the
supervised methods remains below 88%, despite the increase in labelled data. This
observation highlights the robustness and scalability of the SSTL method across
different labelling rates.

In addition, this study conducts a rigorous comparison between the proposed Self-
Supervised Transfer Learning (SSTL) methods and several well-established semi-
supervised learning approaches, including SimCLR, Fast-MoCo, and ITSSL. The results
consistently demonstrate the superiority of the SSTL models. Notably, when operating
under a constrained labelled data scenario with only 10% of the dataset labelled, the SSTL
approach achieves a remarkable accuracy of 91.2%. This performance significantly
surpasses that of its counterparts, with SImCLR attaining 87.6%, Fast-MoCo reaching
82.1%, and ITSSL achieving 84.9%. These findings not only highlight the efficacy of SSTL
but also provide robust and compelling evidence that the incorporation of SSTL net-
works can markedly enhance the accuracy of fault diagnosis systems.

4.2.3. Comparative analysis of visualisations

In this case study, a confusion matrix is employed for the quantitative analysis of
diagnosis results, as illustrated in Figure 13. The results demonstrate that the
proposed Self-Supervised Transfer Learning (SSTL) method exhibits remarkable
efficacy in identifying all fault types with high precision, even when trained on
a dataset with a mere 10% labelled rate. This performance is especially remarkable
when compared to traditional supervised models like DenseNet variants (which
are fine-tuned for impulse noise, denoising, and amplitude-limited scenarios), as
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Figure 13. The classifying performance through confusion matrix. (a) DenseNet(ImpulseNet(Impulse
noise). (b) DenseNet(Denoise).Net(Denoise). (c) DenseNetNet (amplitude-limited). (d) SIimCLR.CLR. (e)
Fast-MoCo. (f) ITSSL. (g) SSTL(Ours).

they are limited to detecting only one type of fault at a time. Moreover, although
semi-supervised models like SImCLR, Fast-MoCo, and ITSSL are capable of gen-
erally detecting all types of gear failures, their accuracy in distinguishing specific
fault categories is still not ideal. In contrast, the SSTL method showcases excep-
tional performance, not only accurately identifying all five types of faults but also
achieving an impressive average accuracy of 91.2%. These compelling results
highlight the strong effectiveness of the SSTL framework in fault diagnosis,
especially in difficult situations where training data is scarce and transient inter-
ference is present.

The T-SNE results presented in Figure 14 provide further evidence of SSTL’s
notable advantages in differentiating between various fault signal types.
Specifically, when constrained to a 10% labelled rate for training, traditional
supervised learning approaches exhibit marked difficulties in distinguishing
between different fault signals. Although semi-supervised models show marginal
improvements in this regard, their overall performance remains limited. In con-
trast, SSTL demonstrates a robust and superior ability to differentiate between
nearly all fault types, with only minimal confusion observed between the Crack
and Normal fault categories. These visualisation results provide strong corrobora-
tive evidence supporting the conclusion that the SSTL framework not only effec-
tively extracts salient features from vibration signals under conditions of transient
interference but also successfully separates signal features of different fault types
within the high-dimensional feature space.
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Figure 14. The feature visualisation through t-SNE. (a) DenseNet(ImpulseNet(Impulse noise). (b)
DenseNet(Denoise).Net(Denoise). (c) DenseNetNet (amplitude-limited). (d) SimCLR.CLR. (e) Fast-
MoCo. (f) ITSSL. (g) SSTL(Ours).

5. Conclusion

In conclusion, this research presents a novel SSTL approach that significantly enhances
the accuracy and reliability of fault diagnosis in planetary gearboxes, particularly in
challenging environments with limited labelled data and transient interference. By
integrating semi-supervised learning with transfer learning and introducing innovative
strategies such as label migration and matching, along with a limiting normalisation
technique, SSTL addresses key limitations of traditional fault diagnosis methods. The
results from two case studies confirm the effectiveness of the proposed approach,
demonstrating its clear advantages over existing methods in terms of both fault detection
accuracy and robustness.

Future work could build upon the findings of this study by exploring the application of
the SSTL approach to other types of rotating machinery beyond planetary gearboxes.
Additionally, further investigation into the scalability of SSTL in real-time applications
with varying levels of transient interference and unlabelled data is warranted. Developing
more advanced techniques for pseudo-labelling and domain adaptation could also
improve SSTL’s performance in even more complex and dynamic environments, poten-
tially leading to broader industrial adoption of this approach.
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